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Abstract

As with most non-trivial models, an exact Bayesian treatment of the probabilistic PCA model (under
a meaningful prior) is analytically intractable. Various approximations have therefore been proposed in
the literature; these include approximations based on type-II maximum likelihood as well as variational
approximations. In this document, we describe an improved variational approximation for Bayesian PCA.
This is achieved by defining a more general prior over the model parameters that has stronger conjugacy
properties, thereby allowing for a more accurate variational approximation to the true posterior.

1 Introduction

The probabilistic PCA model is defined by1

p(t|x,µ,W, τ) = N (t|Wx + µ, τ−1Id), (1)

where t ∈ Rd is the observed variable, x ∈ Rq (q < d) is a latent variable with prior distribution

p(x) = N (x|0, Iq), (2)

and µ ∈ Rd, W ∈ Rd×q and τ ∈ R constitute the model parameters.

Given a set of observed data points D = {tn}N
n=1 ⊂ Rd, the Bayesian approach consists in defining a suitable

prior p(µ,W, τ) over the model parameters and finding the posterior p(µ,W, τ |D) under this prior. The
predictive density is then obtained by averaging over the model parameters according to the posterior:

p(t|D) =
∫ ∫ ∫

p(t|µ,W, τ)p(µ,W, τ |D)dµdWdτ. (3)

It has been observed that by setting q to its maximum possible value (q = d − 1) and choosing a hierar-
chical prior that effectively promotes sparseness in the columns of W, the Bayesian approach can be used
to automatically determine the number of principal components (number of non-zero columns in W) sup-
ported by the observed data. Evaluation of the true posterior under such a prior being intractable, various
approximations have been proposed; these include approximations based on type-II maximum likelihood [1]
and variational approximations [2, 3]. While variational approximations generally provide a more accurate
Bayesian treatment than type-II maximum likelihood methods, the variational approximations proposed so
far are not completely satisfactory. Indeed, the variational approximation of [2] assumes complete factoriza-
tion in both the prior and the variational posterior. An attempt to define a more general prior and obtain

1For z ∈ Rd, N (z|m,Σ) = 1
(2π)d/2 |Σ|−1/2 exp{− 1

2
(z−m)T Σ−1(z−m)}.
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a more accurate variational approximation was recently made in [3]; however this contains some technical
errors and falls short of achieving this goal.

Here we formulate a more general hierarchical prior which, while simulating a sparseness-promoting prior, has
some desirable conjugacy properties. As we show, this allows for a more accurate variational approximation
to the true posterior.

2 Prior

We define a hierarchical prior p(µ,W, τ |α) over the model parameters µ ∈ Rd, W ∈ Rd×(d−1) and τ ∈ R,
governed by a vector of hyper-parameters α ∈ Rd−1, as follows:

p(µ,W, τ |α) = p(µ|W, τ)p(W|τ,α)p(τ), (4)

with2

p(µ|W, τ) = N (µ|Ws0 + m0, (β0τ)−1Id), (5)

p(W|τ,α) =
d−1∏
i=1

N (wi|0, (αiτ)−1Id), (6)

p(τ) = G(τ |a0, b0), (7)

where wi refers to the ith column of W. The prior over the hyper-parameters α is defined as

p(α) =
d−1∏
i=1

G(αi|c0, d0). (8)

In the above, s0 ∈ Rd−1, m0 ∈ Rd and β0, a0, b0, c0, d0 ∈ R are (fixed) hyper-parameters that can be chosen
to give suitable priors.

3 Variational Posterior

We find a variational approximation to the true posterior p(µ,W, τ |D) under the above prior that maximizes
a rigorous lower bound on the log likelihood of the data.

Denoting all the parameters and latent variables in the model as θ, we have for all distributions q(θ),

ln p(D) = ln
∫
p(D,θ)dθ

= ln
∫
q(θ)

p(D,θ)
q(θ)

dθ

≥
∫
q(θ) ln

p(D,θ)
q(θ)

dθ

= L(q), (9)

where we have applied Jensen’s inequality. It is easily shown that maximizing the lower bound L(q) is
equivalent to minimizing the Kullback-Leibler divergence between q(θ) and the true posterior p(θ|D).

2For τ ∈ R, G(τ |a, b) = 1
Γ(a)

baτa−1 exp{−bτ}.
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Here θ = (µ,W, τ,α, X), where X = {xn}N
n=1 is the set of latent variables corresponding to the observed

data D. We consider maximizing the lower bound L(q) subject to the following factorization constraint3:

q(µ,W, τ,α, X) = q(µ,W, τ)q(α)q(X). (10)

As shown in Appendix A, the components of the resulting variational distribution q∗(µ,W, τ,α, X) have
the following forms4:

q∗(µ,W, τ) = q∗(µ|W, τ)q∗(W|τ)q∗(τ), (11)
q∗(µ|W, τ) = N (µ|Wsµ + mµ, (βµτ)−1Id), (12)

q∗(W|τ) =
d∏

k=1

N (w̃k|m(k)
w , (τΛw)−1), (13)

q∗(τ) = G(τ |aτ , bτ ), (14)

q∗(α) =
d−1∏
i=1

G(αi|cα, d(i)
α ), (15)

q∗(X) =
N∏

n=1

N (xn|m(n)
x ,Σx), (16)

where w̃k denotes a column vector corresponding to the kth row of W, and the various parameters are given
by

βµ = β0 +N, (17)

sµ = β−1
µ

(
β0s0 −

N∑
n=1

〈xn〉

)
, (18)

mµ = β−1
µ

(
β0m0 +

N∑
n=1

tn

)
, (19)

Λw = diag〈α〉+ β0s0sT
0 − βµsµsT

µ +
N∑

n=1

〈xnxT
n 〉, (20)

m(k)
w = Λ−1

w

(
N∑

n=1

tnk〈xn〉 − β0m0ks0 + βµmµksµ

)
, (21)

aτ = a0 +
Nd

2
, (22)

bτ = b0 +
1
2

N∑
n=1

tT
n tn +

β0

2
mT

0 m0 −
βµ

2
mT

µmµ − 1
2

d∑
k=1

m(k)T
w Λwm(k)

w , (23)

cα = c0 +
d

2
, (24)

d
(i)
α = d0 +

〈τ‖wi‖2〉
2

, (25)

Σx = (Id−1 + 〈τWT W〉)−1, (26)
m(n)

x = Σx(〈τW〉T tn − 〈τWT µ〉). (27)

3Note that the factorization assumed in the variational distribution is weaker than that in [2], leading to a more accurate
variational posterior.

4Note that due to conjugacy properties of the prior, the variational posterior q∗(µ,W, τ) has the same form as p(µ,W, τ |α).
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In the above, diag〈α〉 denotes a diagonal matrix whose diagonal elements are given by 〈αi〉. The required
moments can easily be computed as

〈xn〉 = m(n)
x , (28)

〈xnxT
n 〉 = Σx + m(n)

x m(n)T
x , (29)

〈αi〉 =
cα

d
(i)
α
, (30)

〈τW〉 =
aτ

bτ
MT

w, (31)

〈τWT W〉 = dΛ−1
w +

aτ

bτ
MwMT

w, (32)

〈τ‖wi‖2〉 = d(Λ−1
w )ii +

aτ

bτ
‖M̃wi‖2, (33)

〈τWT µ〉 = dΛ−1
w sµ +

aτ

bτ
Mw(MT

wsµ + mµ), (34)

where Mw ∈ R(d−1)×d is a matrix whose kth column is m(k)
w , and M̃wi denotes a column vector corresponding

to the ith row of Mw. Eqs. (28)-(30) above follow directly from the properties of the Normal and Gamma
distributions; Eqs. (31)-(34) are derived in Appendix B.

4 Lower Bound

The variational lower bound on the log likelihood of the data is given by

L(q∗) = 〈ln p(D|X,µ,W, τ)〉+ 〈ln p(X)〉+ 〈ln p(µ|W, τ)〉+ 〈ln p(W|τ,α)〉+ 〈ln p(τ)〉+ 〈ln p(α)〉
− 〈ln q∗(X)〉 − 〈ln q∗(µ|W, τ)〉 − 〈ln q∗(W|τ)〉 − 〈ln q∗(τ)〉 − 〈ln q∗(α)〉, (35)

where the various terms in the bound are given by

〈ln p(D|X,µ,W, τ)〉 =
N∑

n=1

{
d

2
〈ln τ〉 − d

2
ln(2π)− 1

2
(
〈τ〉tT

n tn + 〈τxT
nWT Wxn〉+ 〈τµT µ〉

− 2tT
n 〈τµ〉 − 2tT

n 〈τW〉〈xn〉+ 2〈xn〉T 〈τWT µ〉
)}
, (36)

〈ln p(X)〉 =
N∑

n=1

{
− (d− 1)

2
ln(2π)− 1

2
〈xT

nxn〉
}
, (37)

〈ln p(µ|W, τ)〉 =
d

2
ln(β0〈τ〉)−

d

2
ln(2π)− β0

2
{
〈τµT µ〉+ sT

0 〈τWT W〉s0

+ 〈τ〉mT
0 m0 − 2sT

0 〈τWT µ〉 − 2mT
0 〈τµ〉+ 2sT

0 〈τW〉T m0

}
, (38)

〈ln p(W|τ,α)〉 =
d−1∑
i=1

{
d

2
ln(〈αi〉〈τ〉)−

d

2
ln(2π)− 〈αi〉〈τ‖wi‖2〉

2

}
, (39)

〈ln p(τ)〉 = a0 ln b0 − ln Γ(a0) + (a0 − 1)〈ln τ〉 − b0〈τ〉, (40)

〈ln p(α)〉 =
d−1∑
i=1

{c0 ln d0 − ln Γ(c0) + (c0 − 1)〈lnαi〉 − d0〈αi〉} , (41)

〈ln q∗(X)〉 =
N∑

n=1

{
−1

2
ln |Σx| −

(d− 1)
2

ln(2π)− 1
2
Tr(Σ−1

x 〈xnxT
n 〉)
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− 1
2
mT

xΣ−1
x mx + 〈xn〉T Σ−1

x mx

}
, (42)

〈ln q∗(µ|W, τ)〉 =
d

2
ln(βµ〈τ〉)−

d

2
ln(2π)−

βµ

2

{
〈τµT µ〉+ sT

µ〈τWT W〉sµ

+ 〈τ〉mT
µmµ − 2sT

µ〈τWT µ〉 − 2mT
µ〈τµ〉+ 2sT

µ〈τW〉T mµ

}
, (43)

〈ln q∗(W|τ)〉 =
d(d− 1)

2
〈ln τ〉+

d

2
ln |Λw| −

d(d− 1)
2

ln(2π)

− 1
2

d∑
k=1

{
Tr(Λw〈τw̃kw̃T

k 〉)− 2m(k)T
w Λw〈τw̃k〉+ 〈τ〉m(k)T

w Λwm(k)
w

}
, (44)

〈ln q∗(τ)〉 = aτ ln bτ − ln Γ(aτ ) + (aτ − 1)〈ln τ〉 − bτ 〈τ〉, (45)

〈ln q∗(α)〉 =
d−1∑
i=1

{
cα ln d(i)

α − ln Γ(cα) + (cα − 1)〈lnαi〉 − d
(i)
α 〈αi〉

}
. (46)

The additional moments appearing in the above expressions are given by

〈ln τ〉 = ψ(aτ )− ln bτ , (47)

〈τ〉 =
aτ

bτ
, (48)

〈xT
nxn〉 = Tr(Σx) + m(n)T

x m(n)
x , (49)

〈lnαi〉 = ψ(cα)− ln d(i)
α , (50)

〈τµ〉 =
aτ

bτ

(
MT

wsµ + mµ
)
, (51)

〈τµT µ〉 = d(β−1
µ + sT

µΛ−1
w sµ) +

aτ

bτ
‖MT

wsµ + mµ‖2, (52)

〈τw̃k〉 =
aτ

bτ
m(k)

w , (53)

〈τw̃kw̃T
k 〉 = Λ−1

w +
aτ

bτ
m(k)

w m(k)T
w , (54)

where ψ(·) is the digamma function defined by

ψ(a) =
d

da
ln Γ(a). (55)

Eqs. (47)-(50) follow from the properties of the Normal and Gamma distributions; the remaining moments
are derived in Appendix B.

5 Predictive Density

The predictive density obtained by approximating the true posterior p(µ,W, τ |D) with the variational
posterior q∗(µ,W, τ) has the form of a continuous mixture of Student t-distributions:

p̃(t|D) =
∫
p̃(t|x, D)p(x)dx, (56)

where5

p̃(t|x, D) = S(t|mt(x), βt(x)−1Id, νt), (57)

5For z ∈ Rd, S(z|m,Λ, ν) =
Γ((ν+d)/2)

Γ(ν/2)
|Λ|1/2

(νπ)d/2

{
1 + 1

ν
(z−m)T Λ(z−m)

}−(ν+d)/2
.
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with

mt(x) = MT
wx− (MT

wsµ + mµ), (58)

βt(x) =
bτ
aτ

(1 + β−1
µ + (x− sµ)T Λ−1

w (x− sµ)), (59)

νt = 2aτ , (60)

and

p(x) = N (x|0, Id−1). (61)

The above form is derived in Appendix C.
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A Form of Variational Distribution

The lower bound L(q) for a distribution q(µ,W, τ,α, X) that satisfies the factorization constraint in Eq. (10)
is given by

L(q) = 〈ln p(D|X,µ,W, τ)〉+ 〈ln p(X)〉+ 〈ln p(µ|W, τ)〉+ 〈ln p(W|τ,α)〉+ 〈ln p(τ)〉+ 〈ln p(α)〉
− 〈ln q(X)〉 − 〈ln q(µ,W, τ)〉 − 〈ln q(α)〉. (62)

The following sections derive the forms of the components q∗(µ,W, τ), q∗(α) and q∗(X) of the variational
distribution q∗(µ,W, τ,α, X) that maximizes L(q) subject to this factorization constraint.

A.1 Form of q∗(µ,W, τ)

We have,

ln q∗(µ,W, τ) = 〈ln p(D|X,µ,W, τ)〉X + ln p(µ|W, τ) + 〈ln p(W|τ,α)〉α + ln p(τ) + const. (63)

=
N∑

n=1

{
d

2
ln τ − τ

2
〈‖tn −Wxn − µ‖2〉xn

}
+
d

2
ln(β0τ)−

β0τ

2
‖µ−Ws0 −m0‖2

+
d−1∑
i=1

〈d
2

ln(αiτ)−
αiτ

2
‖wi‖2〉αi

+ (a0 − 1) ln τ − b0τ + const. (64)

=
{

(N + d)
d

2
+ a0 − 1

}
ln τ −

{
b0 +

1
2

N∑
n=1

tT
n tn +

β0

2
mT

0 m0

}
τ

− τ

2

{
N∑

n=1

〈xT
nWT Wxn〉+ β0sT

0 WT Ws0 +
d−1∑
i=1

〈αi〉‖wi‖2

}

+ τ

{
N∑

n=1

tT
nW〈xn〉 − β0mT

0 Ws0

}

− τ

2
(β0 +N)µT µ + τµT

{
N∑

n=1

(tn −W〈xn〉) + β0(Ws0 + m0)

}
+ const. (65)

=
{

(N + d− 1)
d

2
+ a0 − 1

}
ln τ −

{
b0 +

1
2

N∑
n=1

tT
n tn +

β0

2
mT

0 m0

}
τ

− τ

2

{
N∑

n=1

〈xT
nWT Wxn〉+ β0sT

0 WT Ws0 +
d−1∑
i=1

〈αi〉‖wi‖2

}

+ τ

{
N∑

n=1

tT
nW〈xn〉 − β0mT

0 Ws0

}

+ ln q∗(µ|W, τ) +
βµτ

2
(Wsµ + mµ)T (Wsµ + mµ) + const. (66)

where

q∗(µ|W, τ) = N (µ|Wsµ + mµ, (βµτ)−1Id), (67)

with

βµ = β0 +N, (68)
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sµ = β−1
µ

(
β0s0 −

N∑
n=1

〈xn〉

)
, (69)

mµ = β−1
µ

(
β0m0 +

N∑
n=1

tn

)
. (70)

From Eq. (66), we have

ln q∗(µ,W, τ)− ln q∗(µ|W, τ) ={
(N + d− 1)

d

2
+ a0 − 1

}
ln τ −

{
b0 +

1
2

N∑
n=1

tT
n tn +

β0

2
mT

0 m0 −
βµ

2
mT

µmµ

}
τ

− τ

2

{
N∑

n=1

〈xT
nWT Wxn〉+ β0sT

0 WT Ws0 − βµsT
µWT Wsµ +

d−1∑
i=1

〈αi〉‖wi‖2

}

+ τ

{
N∑

n=1

tT
nW〈xn〉 − β0mT

0 Ws0 + βµmT
µWsµ

}
+ const. (71)

=
{

(N + d− 1)
d

2
+ a0 − 1

}
ln τ −

{
b0 +

1
2

N∑
n=1

tT
n tn +

β0

2
mT

0 m0 −
βµ

2
mT

µmµ

}
τ

− τ

2

d∑
k=1

w̃T
k

{
N∑

n=1

〈xnxT
n 〉+ β0s0sT

0 − βµsµsT
µ + diag〈α〉

}
w̃k

+ τ

d∑
k=1

w̃T
k

{
N∑

n=1

tnk〈xn〉 − β0m0ks0 + βµmµksµ

}
+ const. (72)

where w̃k denotes a column vector corresponding to the kth row of W, and we have made use of the (easily
proved) identities

sT
1 WT Ws2 =

d∑
k=1

w̃T
k (s1sT

2 )w̃k (73)

and

mT Ws =
d∑

k=1

mk(w̃T
k s). (74)

This gives

ln q∗(µ,W, τ)− ln q∗(µ|W, τ) ={
Nd

2
+ a0 − 1

}
ln τ −

{
b0 +

1
2

N∑
n=1

tT
n tn +

β0

2
mT

0 m0 −
βµ

2
mT

µmµ

}
τ

+ ln q∗(W|τ) +
τ

2

d∑
k=1

m(k)T
w Λwm(k)

w + const. (75)

where

q∗(W|τ) =
d∏

k=1

N (w̃k|m(k)
w , (τΛw)−1), (76)
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with

Λw = diag〈α〉+ β0s0sT
0 − βµsµsT

µ +
N∑

n=1

〈xnxT
n 〉, (77)

m(k)
w = Λ−1

w

(
N∑

n=1

tnk〈xn〉 − β0m0ks0 + βµmµksµ

)
. (78)

From Eq. (75), we have

ln q∗(µ,W, τ)− ln q∗(µ|W, τ)− ln q∗(W|τ) = (79){
Nd

2
+ a0 − 1

}
ln τ −

{
b0 +

1
2

N∑
n=1

tT
n tn +

β0

2
mT

0 m0 −
βµ

2
mT

µmµ − 1
2

d∑
k=1

m(k)T
w Λwm(k)

w

}
τ

+ const. (80)
= ln q∗(τ) + const. (81)

where

q∗(τ) = G(τ |aτ , bτ ), (82)

with

aτ = a0 +
Nd

2
, (83)

bτ = b0 +
1
2

N∑
n=1

tT
n tn +

β0

2
mT

0 m0 −
βµ

2
mT

µmµ − 1
2

d∑
k=1

m(k)T
w Λwm(k)

w . (84)

Thus, from Eq. (81), we see that

q∗(µ,W, τ) = q∗(µ|W, τ)q∗(W|τ)q∗(τ), (85)

where the forms of the components q∗(µ|W, τ), q∗(W|τ) and q∗(τ) are given by Eqs. (67), (76) and (82)
respectively.

A.2 Form of q∗(α)

We have,

ln q∗(α) = 〈ln p(W|τ,α)〉W,τ + ln p(α) + const.

=
d−1∑
i=1

{
〈d
2

ln(αiτ)−
αiτ

2
‖wi‖2〉W,τ + (c0 − 1) lnαi − d0αi

}
+ const.

=
d−1∑
i=1

{
(c0 +

d

2
− 1) lnαi −

(
d0 +

〈τ‖wi‖2〉
2

)
αi

}
+ const. (86)

Hence

q∗(α) =
d−1∏
i=1

G(αi|cα, d(i)
α ), (87)

with

cα = c0 +
d

2
, (88)

d
(i)
α = d0 +

〈τ‖wi‖2〉
2

. (89)
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A.3 Form of q∗(X)

We have,

ln q∗(X) = 〈ln p(D|X,W,µ, τ)〉µ,W,τ + ln p(X) + const.

= −1
2

N∑
n=1

{
xT

nxn + 〈τ‖tn −Wxn − µ‖2〉µ,W,τ

}
+ const.

= −1
2

N∑
n=1

{
xT

n (Id−1 + 〈τWT W〉)xn − 2xT
n 〈τWT (tn − µ)〉

}
+ const. (90)

Hence

q∗(X) =
N∏

n=1

N (xn|m(n)
x ,Σx), (91)

with

Σx = (Id−1 + 〈τWT W〉)−1, (92)
m(n)

x = Σx(〈τW〉T tn − 〈τWT µ〉). (93)

B Computation of Moments

The following sections derive the non-trivial moments in Sections 3 and 4.

B.1 Derivation of 〈τW〉

〈τW〉 =
∫ ∫

τWq∗(W|τ)q∗(τ)dWdτ

=
∫
τ

[∫
Wq∗(W|τ)dW

]
q∗(τ)dτ

=
∫
τMT

wq
∗(τ)dτ

=
aτ

bτ
MT

w. (94)

B.2 Derivation of 〈τWTW〉

〈τWT W〉 =
∫ ∫

τWT Wq∗(W|τ)q∗(τ)dWdτ

=
∫
τ

[∫
WT Wq∗(W|τ)dW

]
q∗(τ)dτ

=
∫
τ
[
d(τΛw)−1 + MwMT

w

]
q∗(τ)dτ

= dΛ−1
w +

aτ

bτ
MwMT

w. (95)
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B.3 Derivation of 〈τ‖wi‖2〉

From Eq. (95) above, it follows directly that

〈τ‖wi‖2〉 = d(Λ−1
w )ii +

aτ

bτ
‖M̃wi‖2. (96)

(97)

B.4 Derivation of 〈τWT µ〉

〈τWT µ〉 =
∫ ∫ ∫

τWT µq∗(µ|W, τ)q∗(W|τ)q∗(τ)dµdWdτ

=
∫ ∫

τWT

[∫
µq∗(µ|W, τ)dµ

]
q∗(W|τ)q∗(τ)dWdτ

=
∫ ∫

τWT
[
Wsµ + mµ

]
q∗(W|τ)q∗(τ)dWdτ

= 〈τWT W〉sµ + 〈τW〉T mµ

= dΛ−1
w sµ +

aτ

bτ
Mw(MT

wsµ + mµ). (98)

B.5 Derivation of 〈τµ〉

〈τµ〉 =
∫ ∫ ∫

τµq∗(µ|W, τ)q∗(W|τ)q∗(τ)dµdWdτ

=
∫ ∫

τ

[∫
µq∗(µ|W, τ)dµ

]
q∗(W|τ)q∗(τ)dWdτ

=
∫ ∫

τ
[
Wsµ + mµ

]
q∗(W|τ)q∗(τ)dWdτ

= 〈τW〉sµ + 〈τ〉mµ

=
aτ

bτ
(MT

wsµ + mµ). (99)

B.6 Derivation of 〈τµT µ〉

〈τµT µ〉 =
∫ ∫ ∫

τµT µq∗(µ|W, τ)q∗(W|τ)q∗(τ)dµdWdτ

=
∫ ∫

τ

[∫
µT µq∗(µ|W, τ)dµ

]
q∗(W|τ)q∗(τ)dWdτ

=
∫ ∫

τ
[
d(βµτ)−1 + (Wsµ + mµ)T (Wsµ + mµ)

]
q∗(W|τ)q∗(τ)dWdτ

= dβ−1
µ + sT

µ〈τWT W〉sµ + 2sT
µ〈τW〉T mµ + 〈τ〉mT

µmµ

= d(β−1
µ + sT

µΛ−1
w sµ) +

aτ

bτ
‖MT

wsµ + mµ‖2. (100)
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B.7 Derivation of 〈τw̃k〉

〈τw̃k〉 =
∫ ∫

τw̃kq
∗(w̃k|τ)q∗(τ)dw̃kdτ

=
∫
τ

[∫
w̃kq

∗(w̃k|τ)dw̃k

]
q∗(τ)dτ

=
∫
τm(k)

w q∗(τ)dτ

=
aτ

bτ
m(k)

w . (101)

B.8 Derivation of 〈τw̃kw̃
T
k 〉

〈τw̃kw̃T
k 〉 =

∫ ∫
τw̃kw̃T

k q
∗(w̃k|τ)q∗(τ)dw̃kdτ

=
∫
τ

[∫
w̃kw̃T

k q
∗(w̃k|τ)dw̃k

]
q∗(τ)dτ

=
∫
τ
[
(τΛw)−1 + m(k)

w m(k)T
w

]
q∗(τ)dτ

= Λ−1
w +

aτ

bτ
m(k)

w m(k)T
w (102)

C Derivation of (Variational) Predictive Density

The true predictive density is given by

p(t|D) =
∫ ∫ ∫

p(t|µ,W, τ)p(µ,W, τ |D)dµdWdτ

=
∫ ∫ ∫ ∫

p(t|x,µ,W, τ)p(x)p(µ,W, τ |D)dµdWdτdx. (103)

Approximating the true posterior p(µ,W, τ |D) above with the variational posterior q∗(µ,W, τ), we get

p(t|D) ≈
∫ ∫ ∫ ∫

p(t|x,µ,W, τ)p(x)q∗(µ,W, τ)dµdWdτdx

= p̃(t|D). (104)

Now, we can write

p̃(t|D) =
∫ ∫ ∫ ∫

p(t|x,µ,W, τ)p(x)q∗(µ|W, τ)q∗(W|τ)q∗(τ)dµdWdτdx. (105)

Integrating out µ, this gives

p̃(t|D) =
∫ ∫ ∫

p̃(t|x,W, τ,D)p(x)q∗(W|τ)q∗(τ)dWdτdx, (106)
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where

p̃(t|x,W, τ,D) =
∫
p(t|x,µ,W, τ)q∗(µ|W, τ)dµ

=
τd/2

(2π)d/2

(βµτ)d/2

(2π)d/2

∫
exp

{
−τ

2
‖t−Wx− µ‖2 −

βµτ

2
‖µ−Wsµ −mµ‖2

}
dµ

=
τd/2

(2π)d/2

(βµτ)d/2

(2π)d/2
exp

{
−τ

2
(
‖t−Wx‖2 + βµ‖Wsµ + mµ‖2

)}
×∫

exp
{
−τ

2
(βµ + 1)

(
µtµ− 2µT 1

(βµ + 1)
(t−Wx + βµ(Wsµ + mµ))

)}
dµ

=
τd/2

(2π)d/2

(
βµ

βµ + 1

)d/2

×

exp
{
−τ

2

(
‖t−Wx‖2 + βµ‖Wsµ + mµ‖2 − 1

(βµ + 1)
‖t−Wx + βµ(Wsµ + mµ)‖2

)}
=

τd/2

(2π)d/2

(
βµ

βµ + 1

)d/2

exp
{
−
(

βµ

βµ + 1

)
τ

2
‖t−Wx + Wsµ + mµ‖2

}
= N (t|Wx− (Wsµ + mµ), (β̃τ)−1Id), (107)

with

β̃ =
βµ

βµ + 1
. (108)

Next, we integrate out W from Eq. (106). This gives

p̃(t|D) =
∫ ∫

p̃(t|x, τ,D)p(x)q∗(τ)dτdx, (109)

where

p̃(t|x, τ,D) =
∫
p̃(t|x,W, τ,D)q∗(W|τ)dW

=
(β̃τ)d/2

(2π)d/2

τd(d−1)/2|Λw|d/2

(2π)d(d−1)/2
×∫

exp

{
− β̃τ

2
‖t−Wx + Wsµ + mµ‖2 − τ

2

d∑
k=1

(w̃k −m(k)
w )T Λw(w̃k −m(k)

w )

}
dW

=
(β̃τ)d/2

(2π)d/2

τd(d−1)/2|Λw|d/2

(2π)d(d−1)/2
exp

{
− β̃τ

2
‖t + mµ‖2 − τ

2

d∑
k=1

m(k)T
w Λwm(k)

w

}
×

∫
exp

{
− τ̃

2

d∑
k=1

(
w̃T

k (Λw + β̃(x− sµ)(x− sµ)T )w̃k − 2w̃T
k (Λwm(k)

w + β̃(tk +mµk)(x− sµ))
)}

dW

=
(β̃τ)d/2

(2π)d/2
|ΛwΛ̃(x)−1|d/2 ×

exp

{
− β̃τ

2
‖t + mµ‖2 − τ

2

d∑
k=1

(
m(k)T

w Λwm(k)
w − m̃k(t,x)T Λ̃(x)m̃k(t,x)

)}
, (110)

with

Λ̃(x) = Λw + β̃(x− sµ)(x− sµ)T , (111)

m̃k(t,x) = Λ̃(x)−1
(
Λwm(k)

w + β̃(tk +mµk)(x− sµ)
)
. (112)
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Now,

Λ̃(x)−1 = Λ−1 −

(
1

β̃−1 + (x− sµ)T Λ−1
w (x− sµ)

)
Λ−1(x− sµ)(x− sµ)T Λ−1. (113)

With some algebraic manipulation, Eqs. (110-113) above give

p̃(t|x, τ,D) = N
(
t|MT

wx− (MT
wsµ + mµ), (β̃−1 + (x− sµ)T Λ−1

w (x− sµ))τ−1Id

)
. (114)

Finally, integrating out τ from Eq. (109), we get

p̃(t|D) =
∫
p̃(t|x, D)p(x)dx, (115)

where

p̃(t|x, D) =
∫
p̃(t|x, τ,D)q∗(τ)dτ

= S(t|mt(x), βt(x)−1Id, νt), (116)

with

mt(x) = MT
wx− (MT

wsµ + mµ), (117)

βt(x) =
bτ
aτ

(1 + β−1
µ + (x− sµ)T Λ−1

w (x− sµ)), (118)

νt = 2aτ . (119)
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