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Abstract

As with most non-trivial models, an exact Bayesian treatment of the probabilistic PCA model (under
a meaningful prior) is analytically intractable. Various approximations have therefore been proposed in
the literature; these include approximations based on type-II maximum likelihood as well as variational
approximations. In this document, we describe an improved variational approximation for Bayesian PCA.
This is achieved by defining a more general prior over the model parameters that has stronger conjugacy
properties, thereby allowing for a more accurate variational approximation to the true posterior.

1 Introduction

The probabilistic PCA model is defined by!
ptlx, u, W, ) = N(tWx+p, 7 1), (1)
where t € R? is the observed variable, x € RY (¢ < d) is a latent variable with prior distribution
p(x) = N(x[0,L), (2)
and g € R, W € R?*9 and 7 € R constitute the model parameters.

Given a set of observed data points D = {t,,}_; C R?, the Bayesian approach consists in defining a suitable
prior p(p, W, ) over the model parameters and finding the posterior p(p, W, 7|D) under this prior. The
predictive density is then obtained by averaging over the model parameters according to the posterior:

p(t|D) = / / / Pt W, 7)p(ps, W 7| D)dpdWdr. 3)

It has been observed that by setting ¢ to its maximum possible value (¢ = d — 1) and choosing a hierar-
chical prior that effectively promotes sparseness in the columns of W, the Bayesian approach can be used
to automatically determine the number of principal components (number of non-zero columns in W) sup-
ported by the observed data. Evaluation of the true posterior under such a prior being intractable, various
approximations have been proposed; these include approximations based on type-II maximum likelihood [1]
and variational approximations [2, 3]. While variational approximations generally provide a more accurate
Bayesian treatment than type-II maximum likelihood methods, the variational approximations proposed so
far are not completely satisfactory. Indeed, the variational approximation of [2] assumes complete factoriza-
tion in both the prior and the variational posterior. An attempt to define a more general prior and obtain

'For z € R%, N(z|m, ) = W\Erlﬂ exp{—%(z —m)TE"(z—m)}.



a more accurate variational approximation was recently made in [3]; however this contains some technical
errors and falls short of achieving this goal.

Here we formulate a more general hierarchical prior which, while simulating a sparseness-promoting prior, has
some desirable conjugacy properties. As we show, this allows for a more accurate variational approximation
to the true posterior.

2 Prior

We define a hierarchical prior p(u, W, 7|a) over the model parameters p € R4, W € R»*(@=1) and 7 € R,
governed by a vector of hyper-parameters o € R?~1, as follows:

P W,rl) = (W, P)p(Wir, a)p(r), 0
with?

PEIW, ) = Nl Wso -+ mo, (5o) L), o)

pWira) = TTAw0.(0r) ), ()

p(r) = G(rlao,bo). ™)

where w; refers to the ith column of W. The prior over the hyper-parameters « is defined as
d—1
ple) =[] 9(aileo, do). (8)
i=1

In the above, sy € R™!, my € R? and By, ao, bo, co, do € R are (fixed) hyper-parameters that can be chosen
to give suitable priors.

3 Variational Posterior

We find a variational approximation to the true posterior p(u, W, 7|D) under the above prior that maximizes
a rigorous lower bound on the log likelihood of the data.

Denoting all the parameters and latent variables in the model as 0, we have for all distributions ¢(8),
lnp(D) = ln/p(D7 0)do

p(D,6)
ln/q(a) 0 de
p(D,9)
> /q(O)ln 10 do

L(a);

9)

where we have applied Jensen’s inequality. It is easily shown that maximizing the lower bound L(q) is
equivalent to minimizing the Kullback-Leibler divergence between ¢(@) and the true posterior p(6|D).

2For 7 € R, G(7|a,b) = F(la) bara~ 1 exp{—br}.



Here 0 = (u, W, 7,a, X), where X = {x,,}N_, is the set of latent variables corresponding to the observed
data D. We consider maximizing the lower bound £(gq) subject to the following factorization constraint?:

q(p, W, t,0,X) = q(p, W,7)gq(a)q(X).

(10)

As shown in Appendix A, the components of the resulting variational distribution ¢*(u, W, 7, a, X) have

the following forms

4

¢ W,m) = ¢ (W,7)¢"(W|r)q" (1),
q*(u\W,T) = N(“‘WSN+mN7(ﬁN7)_IId)7
d
¢(Wlr) = [[N@ml), (rAx)™),
k=1

q*(T) = g(TlaTv bT)?

d—1
g'(e) = []9(ailea.dd),
=1

N
(X)) = [[NE.m, =),
n=1

(11)
(12)

(13)
(14)

(15)

(16)

where wj, denotes a column vector corresponding to the kth row of W and the various parameters are given

by

e
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my,

m(®)
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b,
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ﬁO+N7

Bt <ﬁoSo - Z(Xn>> ;

n=1

N
ﬁ;j,l <ﬁ01’1’10 + Z tn) )
n=1

N
diag(a) + Bososy — ﬂususﬁ + Z(anz%
n=1
N
A (Z tnk(Xn) — BomokSo + ﬁuﬂlukSu) ;
n=1
n Nd
a4+ ¢
0 9 ’
N d
1 T Bo Bu ¢ 1 ()T (k)
bo+ 5 ;tntn + Smgmy — = Emfmy, — o ;mw Awm{),
L d
P
0 27
12
o+ 1)

(Tg_q + (tWTW)) 1,
S ((TW) b, — (TWT ).

(17)

(18)

3Note that the factorization assumed in the variational distribution is weaker than that in [2], leading to a more accurate

variational posterior.

4Note that due to conjugacy properties of the prior, the variational posterior ¢* (u, W, 7) has the same form as p(u, W, 7| cx).



In the above, diag{a) denotes a diagonal matrix whose diagonal elements are given by («;). The required
moments can easily be computed as

(xp) = m{Y, (28)
<XnX£> = 2x+m§cn)m§(n)T7 (29)
) = (30)
(8%
(rW) = M, (31)
(TWIW) = dA;V1+ZiMWMVTV, (32)
— a‘r =

(rllwil*) = d(Awl)ii+F||Mwill27 (33)
(rWTp) = dA;,ls“Jr%Mw(vaqurmu), (34)

where M, € R(4=D*d i 3 matrix whose kth column is m‘(,f,c ), and 1\~/Iwi denotes a column vector corresponding

to the ith row of My,. Eqgs. (28)-(30) above follow directly from the properties of the Normal and Gamma
distributions; Eqgs. (31)-(34) are derived in Appendix B.

4 Lower Bound

The variational lower bound on the log likelihood of the data is given by

L(¢") = (np(DIX,p, W, 7)) + (Inp(X)) + (Inp(u|W,7)) + (Inp(W]|7, ) + (Inp(7)) + (In p(cx))
— (Ing"(X)) = (Ing"(u[W, 7)) = (Ing"(W|7)) = (Ing"(7)) — (Ing*(r)), (35)

where the various terms in the bound are given by

(Inp(D|X, u, W, 7)) = f: {Z(ln T) — gln(%r) — % (M)tlt, + (rxE WIWx,,) + (rp” p)

o ) W) ) + 2000 W) (36)
(np(x)) = ﬁj {15 miem) - et (37)

(np(ulW, 7)) = SIn(Bo(r)) — 5 n(2m) — 2 {(ru" ) + T (FWTWiso
+(m)mmo — 255 (7W ) — 2m] (i) + 25 (W) o} (39)
(np(Wir,a)) = dZ { Sttty - §uem - L0l (39)
(Inp(7)) = aglnby —InT(ag) + (ag — 1){(InT) — by(7), (40)
(lnp(a)) = lij{co Indy —InT(co) + (co — 1){In ;) — do{c;)}, (41)

(ng (X)) = i {~gm 1= - 5 mem) - (s el



—omISm, <xn>TEx1mx} , (42)
x d d 6# T T T
(Ing" (uW,7)) = §(Bu(r) = 5mEr) = 2 {{ruT ) + s, (W W)sy
+ <T>mlTLmu - 2slTL(TWTu> - leTL(Tu) + QSTL<TW>T1’HH} , (43)
(Ing"(W|r)) = d(d; Y inr) + gln Aw| — d(d; Y 1 (2m)
- i,i{Trmva%» —2mT Ay (rwp) + (PmE T A mP |, (44)
(Ing*(r)) = a;Inb, —InT(a;)+ (ar — ){In7) — b (1), (45)
d—1
(Ing*(e)) = Z {ca In dg) —InT(cer) + (cax — 1){In ;) — dg) (ai>} . (46)

i=1

The additional moments appearing in the above expressions are given by

(Int) = ¢(a,;)—1Inb,, (47)

ar
<T> = biv (48)
(xhxn) = Tr(Ex) +m m{Y, (49)
ney) = ¢(ca)—Indy), (50)

ar
() = 3~ (Myspy +my), (51)

_ - Qr

(th'u) = dBp' +spAG sp) + 5 IMGsp +mpull?, (52)

~ a/T
(Twi) = b*m&lf), (53)
(twpwl) = AL+ Z—Tm&}f)m&’f)T, (54)

where (+) is the digamma function defined by

Y(a) = 4 InT(a). (55)

da

Eqgs. (47)-(50) follow from the properties of the Normal and Gamma distributions; the remaining moments
are derived in Appendix B.

5 Predictive Density

The predictive density obtained by approximating the true posterior p(p, W, 7|D) with the variational
posterior ¢*(p, W, 7) has the form of a continuous mixture of Student t-distributions:

B(tD) = / B(t]x, D)p(x)dx, (56)
where®

pltlx, D) = S(tme(x), Be(x) " g, vt), (57)

v Al/2 —(v+d)/2
5For z € R%, S(z|m, A,v) = 7F(;(j7%>/2) (lmrl)d/2 {1+ %(z —m)TA(z—m)} (v+d)/2,




with

mi(x) = MIx— (MLsy +mp), (58)
B = T B G )AL (- sp), (59)
v = 2a,, (60)
and
px) = N[0T, 1), (61)

The above form is derived in Appendix C.

References

[1] Christopher M. Bishop. Bayesian PCA. In Advances in Neural Information Processing Systems, vol-
ume 11, 1999.

[2] Christopher M. Bishop. Variational principal components. In International Conference on Artificial
Neural Networks, 1999.

[3] Shigeyuki Oba, Masa-aki Sato, and Shin Ishii. Prior hyperparameters in Bayesian PCA. In International
Conference on Artificial Neural Networks, 2003.



A Form of Variational Distribution

The lower bound £L(q) for a distribution (@, W, 7, o, X ) that satisfies the factorization constraint in Eq. (10)
is given by
L(q) = (np(D|X,pu, W,7))+ (Inp(X)) + (Inp(p|W,7)) + (Inp(W|r, o)) + (In p(7)) + (In p(cx))
— (Ing(X)) — (Ing(p, W, 7)) — (Ing(a)). (62)

The following sections derive the forms of the components ¢*(u, W, 7), ¢*(a) and ¢*(X) of the variational
distribution ¢*(u, W, 7, ¢, X') that maximizes £(q) subject to this factorization constraint.

A.1 Form of ¢*(u, W, T)

We have,
Ing*(p, W,7) = (lnp(D|X,p, W,7))x +Inp(p|W,7) + (Inp(W|r, ) + Inp(7) + const.  (63)
= d 2 d 607— 2
= DG Gl W e f G 007) — 5T Wl
S g ST w2 InT—b
+ Z 5 n(a;T 5 [IWil|*)a; + (@p — 1) InT — by + const. (64)
i=1
. d T ﬁO T
= (N+d) +ap—1pInT—<qby+ = Ztt +?m0m0 T
(X d—1
) {Z<XZWTWXn> + BosT WTWs + Z(ai>wi|2}
n=1 i=1
N
+7 {Z tIW(x,) — ﬁomOTWso}
n=1
- N
_ 5(@) + N uTp+ T {Z(t" — W{x,)) + Bo(Wsp + mo)} + const. (65)
n=1
d 1Y 8
= {(N+d— )= +ag— 1}1117 — {bo + 3 ZtTtn + Omono}
n=1
(X d—1
-5 {Z<X§WTWxn> + Bost WIWsg + Z(ai>wi|2}
n=1 i=1
+ T {Z tTW (xn) ﬁngTWso}
n=1
¥ But T
+ Ing"(p|W,7) + ?(Wsu +my,)" (Wsy, +my,) + const. (66)
where
¢'(WW,7) = N(u[Wsp +mp, (Bur) '), (67)
with
Bu = Bo+N, (68)



N
su = Oy <ﬂ050 - Z<Xn>> ; (69)
n=1
N
my = G <ﬂ0m0 + Z%) - (70)
n=1
From Eq. (66), we have
Ing"(p, W,7) —Ing"(p|W,7) =
d Bo B
{(N+d—1)2+a0—1}1n7'—{bo—|— ZtTtn—F 2mgm0—7um IJ}T
(X
_ 5 {;( TWTWXn> —s—ﬁong WSO — ﬁ“SHW WSIJJ =+ Z Oél HWZH }
N
+ 7 {Z tTW(x,,) — fomI Wsy + ﬁuszsu} + const. (71)
n=1
d g Bo 8
= {(N+d—1)2+a0— l}lnr— {bo—i—Q;tTt + — 5 Tmo— ;mﬂmu}T
LA N
D) Z Wi {Z XnX,,) + Bosos) — ﬂususu + diag(a >} Wi
d N
Z {Ztnk(xn) — Bomorso + 6Mm“ksu} + const. (72)

where Wy, denotes a column vector corresponding to the kth row of W, and we have made use of the (easily

proved) identities

d
sTWTWs, Z Wi (s183 )Wy, (73)
k=1
and
d
m’Ws = ka(vvgs) (74)
k=1
This gives
Ing*(p, W,7) —lng*(u|W,7) =
N
Nd l—,r, . Po m? T
{2+a01}ln7{b0+2n21t tn+? mo*7mumu T
+ Ing"(W|r) + Zm(k)TA m{¥) + const. (75)
k 1
where
d
¢(Wir) = [[NmE, (rAw) ™), (76)

k=1

oo



with

Ay, = diag{a) + Bososy — ﬁ/JSNSITi + i(xnxﬂ, (77)
. n=1
m{y) = A <Z tok (Xn) — Bomokso + 5umwcsu> : (78)
n=1
From Eq. (75), we have
Ing"(pu, W,7) —Ing*(u|W, 1) — lnq*(W|T) = (79)
{]\;d +ag — 1} InT — {bo + = Z tTt + ﬁ20 mgmg — %mumu — ; m(k)TA m(k)}
+ const. (80)
= Ing*(7) + const. (81)
where
¢(r) = G(rlas,br) (82)
with
ar = ap+ %, (83)
1 & T Bo 1 Bu k)T k
b, = b0+§Ztntn+3mOmo mumu——zm( TAmP). (84)
n=1 -
Thus, from Eq. (81), we see that
(1, W,T) = ¢ (W, 7)q"(WIr)q"(7), (85)

where the forms of the components ¢*(pu|W,7), ¢*(W|7) and ¢*(7) are given by Eqgs. (67), (76) and (82)
respectively.

A.2 Form of ¢*(«)

We have,
Ing*(a) = (Inp(W|r,a))w,r + Inp(a) + const.
d—1
= { In(a;7 2>W’T +(co—1)Ina; — doal} + const.
=1
d—1 2
= { (co —|— ——1Dna; — (do + <T||W21H>> ai} -+ const. (86)
=1
Hence
d—1 ‘
¢*(a) = []G(ailca.dd), (87)
i=1
with
d
Cae = Co+ 5, (88)
2
i T{IW;
b = dO+M' (89)



A.3 Form of ¢*(X)

We have,

Hence

with

(1np(D|X W, p, 7)) pw,r + Inp(X) + const.

—= Z {xIx,, + (7][tn — Wx,, — p||*) . w,- } + const.
n=1

[\D}—‘

N

X)) = H./\/'(X"\m;"),zx),
n=1

S = (Tgo1+ (TWIW)™!

m = S (W)Tt, — W p)).

B Computation of Moments

The following sections derive the non-trivial moments in Sections 3 and 4.

B.1 Derivation of (W)

(TW)

//TWq*(W|T)q*(7)deT

= /T {/Wq*(Wh)dW} ¢ (r)dr
/ T™L ¢* (1)dr

a
= —MJ.
b Y

B.2 Derivation of (TW'W)

WIW) = [ [rWIWe Wi (r)awas
_ / ; { / W Wq (WIr)dW | ¢ (r)dr
- /T [d(TAw) ™" + My ML ] ¢* (7)dr

— dAQ ¢ ZJMWMQ

10

N
5 Z PXaoy + (TWIW))x,, — 2x) (tW 7 (t,, — p)) } + const.

(90)

(94)



B.3 Derivation of (7||w]|?)

From Eq. (95) above, it follows directly that

w

— a‘r =
(Pliwall®) = d(AL s + 5 IMuws .

B.4 Derivation of (W7 p)

(TWTp)

///TWTNq*(N|W,T)q*(W|T)q*(T)dude7-

- //TWT [/#q*(ulwﬁ)du] ¢ (Wr)g"(T)dWdr

= //TWT (Wsy, +my] ¢"(Wr)g" (1)dWdr

= (W 'W)sy + (tW)"my,

= dA,!

B.5 Derivation of (rpu)

ar

ey = [ [ [ rua lWor)a (WG (r)dudWar

B // U“q (HW, T)d“} (W|r)g*(r)dWdr

= // Ws'qum” (W|T) ()deT
= (TW)sy + (1)m

b

B.6 Derivation of (ru”pu)

(ru” )

///TNTIMJ*(H\W,T)q*(W|T)q*(T)deWdT

/ / U p' g (pIW, m)dp| ¢ (Wr)q"(r)dWdr

A

+ (Wsp + mu) (Wsp +my)| ¢"(Wr)g" (1)dWdr

By + s (TWTW)sy + 28, (TW) "my, + (r)mjmy,

A" +spAy

ar
Sp,) + bf”M&Su + 11'1/1/”2

11

(98)

(100)



B.7 Derivation of (twy)

<TV~Vk>

B.8 Derivation of (7w, w?)

(TWwr)

//kaq (Wil (7)dpdr
=[] [wainasn o (s
= /Trngf)q*(r)dT

S (101)

= //Tvvkv?/kT.q*(Gvkh)q*(T)dﬁvde

_ / [ / ool g (S| )dwk} *(r)dr

- / )+ mEm®] ¢ (r)ar

C Derivation of (Variational) Predictive Density

The true predictive density is given by

p(t[D)

N b m(F) m®7 (102)
///p(tIMW,T)p(u,W,TID)dudeT
[ ][] [ ot W.ripmte. W, rlD)dndwWarax. (103)

Approximating the true posterior p(u, W, 7|D) above with the variational posterior ¢* (@, W, 7), we get

Q

p(t|D)

Now, we can write
e = [[[[r

Integrating out w, this gives

(t|D)

//// (t1x, 1, W, T)p(x)q" (10, W, 7)dpud W drdx

= B(t|D).

(104)
(t]x, o, W, T)p(x)q" (u|W, 7)g" (W|7)q" (7)dpud W drdx. (105)
/// (t|x, W, , D)p(x)q* (W|r)q* (1)dWdrdx, (106)

12



where

p(t[x, W, 7, D

with

_ / p(t], 11, W, 7)q" (W, 7)dps

T2 (BpT)Y? T 2 But 2
s e { G- W wl? = 7 Wy - e e

d/2 (/BNT)d/z
@m)irz (2myirz P

/eXp {—;(ﬂu +1) (utu - 2uTW1+1)(t - Wx + B (Wsy + mu))) } dp

{=5 (e = Wx|? + B Wy +mp|2) } x

d/2 d/2

Cm@2 \ By +1

T 1
exp {—2 (|t - Wx||? + BulWsy + mNH2 —

(Bp +1)

/2 By /2 B 7- 2
(27T)d/2 <ﬂﬂ+1> exp{— <ﬂu+1) §||t—Wx+Wsu+mu” }

Ht — Wx + ﬁN(WSH + mN)IQ) }

= N(t/Wx — (Wsy +my), (67)'Ly), (107)
- Bu
R et (108)

Next, we integrate out W from Eq. (106). This gives

where

p(t|x, 7, D)

with

B(t|D) // (t|x, 7, D)p(x)q* (r)drdx, (109)

/ B(t]x, W, D)g" (Wr)dW

(BT)d/2 7,d(dfl)/2|AW|cl/2
(2m)d/2 (2m)dld=1)/2

> d
/exp {‘%THt — Wx + Wsy, +my|® — % Z(vvk —mNT Ay (W — m&’f))} dW
k=1

_ - d

(B7)%/2 7HITD2| A, |72 BT 2 T (k)T (k)

GriE iy P T el =g D my Al
k=1

d

/eXp {—; > (VV%(AW + Bx = sp)(x = sp) )Wy, — 2% (Awmly) + Bty + mpun) (x — Su))) } dW

k=1
/2
O IAAGI 2 »
~ d
exp {—ﬂ;“? + IIlNH2 - % ; (mgf)TAwmgf) - rhk(t,x)TA(x)rhk(t,x)> } ) (110)
Ax) = Aw+Bx—sp)(x—su)’, (111)
gt x) = Ax)! (Awmgf> + Bt + mp) (x — su)) . (112)

13



Now,

A= 1
B+ (x— SN)TA‘;I(X —spu

With some algebraic manipulation, Egs. (110-113) above give

Ax)"! = )) Afl(xfsﬂ)(xfsu)TAfl. (113)

pltlx,7,D) = N (t|MVTVx — (MZsp 4+ mp), (371 + (x — sp) TAG (x — su))f—lxd) . (114)

Finally, integrating out 7 from Eq. (109), we get

A(tlD) = / B(tlx, D)p(x)dx, (115)
where
Atlx, D) = / B(tlx, 7, D) (r)dr
= S(t\mt(x),ﬁt(x)_lId,yt), (116)
with
mg(x) = MvTvxf(MvTvqurmp,), (117)
Bux) = Z—:uw;;+<x—su>TA;1<x—sm>, (118)
v = 2a;. (119)
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