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Abstract

Surrogate risk minimization is a popular framework for supervised learning; property elicitation
is a widely studied area in probability forecasting, machine learning, statistics and economics. In
this paper, we connect these two themes by showing that calibrated surrogate losses in supervised
learning can essentially be viewed as eliciting or estimating certain properties of the underlying
conditional label distribution that are sufficient to construct an optimal classifier under the target
loss of interest. Our study helps to shed light on the design of convex calibrated surrogates. We
also give a new framework for designing convex calibrated surrogates under low-noise conditions
by eliciting properties that allow one to construct ‘coarse’ estimates of the underlying distribution.
Keywords: Surrogate risk minimization, convex calibrated surrogates, multiclass classification,
property elicitation, proper scoring rules, proper losses.

1. Introduction

Surrogate risk minimization is one of the most popular algorithmic frameworks for supervised learn-
ing, and there has been much interest in the machine learning and learning theory community in
recent years in designing convex calibrated surrogates for various multiclass learning problems,
including 0-1 classification, subset ranking, multilabel classification and others, which lead to con-
sistent learning algorithms (Bartlett et al., 2006; Zhang, 2004a,b; Tewari and Bartlett, 2007; Stein-
wart, 2007; Cossock and Zhang, 2008; Xia et al., 2008; Duchi et al., 2010; Buffoni et al., 2011;
Ravikumar et al., 2011; Calauzenes et al., 2012; Lan et al., 2012; Ramaswamy and Agarwal, 2012;
Ramaswamy et al., 2013). In this paper, we seek to understand at a fundamental level what proper-
ties of the underlying distribution these calibrated surrogates aim to estimate.

We turn to tools from the areas of property elicitation and proper scoring rules, which have a long
history in the probability forecasting literature and have recently received renewed interest in the
machine learning, statistics, and economics communities (Savage, 1971; Schervish, 1989; Gneiting
and Raftery, 2007; Lambert et al., 2008; Lambert and Shoham, 2009; Vernet et al., 2011; Abernethy
and Frongillo, 2012; Steinwart et al., 2014). In particular, we show that calibrated surrogates for
a supervised learning problem can essentially be viewed as eliciting a property of the conditional
label distribution that is sufficient to construct an optimal classifier for the given loss.

We connect the two themes of this paper by defining the notion of calibrated properties for any
given loss, which are properties of the conditional distribution from which one can construct an opti-
mal prediction under that loss. We show that any strictly proper scoring rule for a calibrated property
forms a calibrated surrogate. We use this framework to study the design of convex calibrated surro-
gates using both linear and nonlinear properties. We show how the standardization functions studied
by Buffoni et al. (2011) for subset ranking losses, as well as the general least-squares type surrogates
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studied by Ramaswamy et al. (2013), effectively amount to estimating linear properties of the distri-
bution. We then show how using nonlinear properties can allow for the design of lower-dimensional
convex calibrated surrogates. One offshoot of our work is a new framework for studying low-noise
conditions; we show that eliciting a vector of quantiles allows one to obtain interval estimates of the
label probabilities, based on which one can construct calibrated surrogates under any such condition
where such a coarse probability estimate suffices to find an optimal classifier.

Notation. For n € Z,, denote [n] = {1,...,n} and A, = {p € R} : }°" , p; = 1}. Denote
by S, the set of permutations on n objects. For u € R", denote argsort(u) = {0 eS,u >
u; = o(i) < o(j), Vi,j € [n]}. Foraset A C R", denote by relint(A) the relative interior
of A, by bndry(A) the boundary of A, and by dim(A) the dimension of the affine extension of
A. For a matrix L € R™*¥, denote by col(L) the column-space of L, and by affdim(L) the affine
dimension of the set of columns of L. For a strictly convex function ¢ : R"—R, denote by B the
Bregman divergence with respect to ¢, defined as By(uq, u2) = ¢(u1) — ¢(uz) — 8¢I2 (u; — ug)
where 0¢,,, denotes a subderivative of ¢ at us.

2. Preliminaries and Background

We give background and set up terminology related to surrogate risk minimization in Section 2.1
and property elicitation in Section 2.2; the rest of the paper will then connect these two themes.

2.1. Surrogate Risk Minimization and Calibrated Surrogates

We consider supervised learning problems with instance space X, finite label space ) = [n], and
finite prediction space Y= [k] (often Y =, but this need not always be the case). Given training
examples (X1,Y1),..., (X, Yy) drawn i.i.d. from some underlying distribution D on X' x [n],
the goal is to learn a function h : X'—[k] with good performance according to some loss function
¢ : [n] x [k]=>R4, or equivalently, according to some loss matrix L € R’}LX’“ (we will use these
two notions interchangeably, with the understanding that L, = {(y,t) Yy € [n],t € [k]). In
particular, the goal is to learn a function h with small ¢-generalization error w.r.t. D, defined as

ery[h] = E(x y)~pll(Y, h(X))]; an algorithm that given m random examples learns a (random)

function h,, is (-consistent w.r.t. D if ert, [hm]i infp. x [k erl;[h] (as m—00) . For any = € X,
we will denote py(z) = P(Y = y|X = z) Vy € [n] (under D) and p(x) = (p1(2),...,pn(z))".
For p € A;, we will find it convenient to define Opt(¢, p) = argmin, ) Eyp[¢(Y,?)]. Clearly,
any classifier h that satisfies h(z) € Opt(¢, p(z)) Yz € X achieves the optimal ¢-error under D.

Surrogate risk minimization algorithms. Since minimizing the discrete loss ¢ directly is hard, a
common algorithmic approach is to minimize a surrogate loss 1) : [n] x R*—R_ for some suitable
d € 7. In particular, one learns a function f,,, : X —R? by solving

ming Y. (Y5, £(X5))

over a suitably rich class of functions f : X—R? and then returns h,, = pred o f,, for some
suitable mapping pred : RY—[k] (for example, for multiclass 0-1 classification, where k& = n
and (o1 (y,t) = 1(t # y), many common algorithms such as those considered by Zhang (2004b)
and Tewari and Bartlett (2007) learn a function f,,, : X—R" and then return a classifier h,,, =
argmax of},,). In practice, the surrogate ¢ is often chosen to be convex in its second argument to
enable efficient minimization. It is known that if the minimization is performed over a universal
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function class (with suitable regularization), then the resulting algorithm is v-consistent w.r.t. D,

i.e. that the 1)-generalization error of f,, w.r.t. D, defined for a function f : X—R? as er% if] =

E(x,y)~p[¥(Y,£(X))], converges to the optimal: er% [fm]iinff: YR er% [f]. There has been
much work over the last several years on understanding when -consistency (of f,,,) also implies
£-consistency (of h,,), and how to design surrogates satisfying this property; in particular, this has
led to the study of surrogates that are calibrated with respect to the target loss £ (Bartlett et al., 2000;
Zhang, 2004a,b; Tewari and Bartlett, 2007; Steinwart, 2007; Ramaswamy and Agarwal, 2012).

Calibrated surrogates. A pair (1), pred) is said to be ¢-calibrated over P C A,, if

peP: uERd:pre;&f;géOpt(Z,p) EYNp [w(Y7 U)] ~ uléllgd EYNPW)(K ll)] '
It is known that (¢, pred) is ¢-calibrated over P if and only if ¢-consistency (of f,,) implies ¢-
consistency (of h,, = pred o f,,,) for all distributions D for which p(z) € P Vx (Bartlett et al.,
2006; Zhang, 2004b; Tewari and Bartlett, 2007; Ramaswamy and Agarwal, 2012, 2015). Thus,
given a target loss /, in order to design a surrogate risk minimization algorithm that is ¢-consistent
w.r.t. some class of distributions D, one needs to design (¢, pred) that is ¢-calibrated over the
corresponding set of conditional distributions P. As noted above, one is often interested in convex
calibrated surrogates, for which v is convex in its second argument, to enable efficient minimization.

2.2. Property Elicitation and Proper Scoring Rules/Losses

When the goal is to elicit a full distribution p € A,,, it is well known that one can use a (strictly)
proper scoring rule/loss. A scoring rule/loss in this context is a function ¢ : [n] x A,—R, that
assigns a ‘penalty’ 1 (y, p’) to an estimate/report p’ € A,, when an outcome y € [n] is observed,
and is said to be proper over P C A,, if

VpeP: p € argmingea, By pt(Y, Pl

and strictly proper over P if the above minimizer is unique for all p € P.! In probability fore-
casting and economics, where the goal is to elicit the distribution from an agent, the agent reports a
distribution p’, and on observing an outcome y drawn from the true distribution p, receives a reward
(or in our setting, incurs a loss) given by the scoring rule, namely v (y, p’); a strictly proper scoring
rule ensures that truthful reporting maximizes the agent’s expected reward. In machine learning
and statistics, where the goal is to estimate the distribution from random observations vy, . .., Ym
sampled from p, one estimates p’ to minimize the average value of the scoring rule on the observed
sample, % >, ¥(yi, p'); here a strictly proper scoring rule yields a consistent estimator.

Proper (and strictly proper) scoring rules/losses for eliciting full probability distributions are
fairly well characterized (Savage, 1971; Schervish, 1989; Gneiting and Raftery, 2007; Vernet et al.,
2011). More recently, there has been much interest in understanding what types of scoring rules/losses
can be used when the goal is to elicit not the full probability distribution p, but rather some property
of p of interest (Lambert et al., 2008; Lambert and Shoham, 2009; Abernethy and Frongillo, 2012;
Steinwart et al., 2014; Frongillo and Kash, 2015).

Property of a distribution. In general, a property is any ‘statistic’ of a distribution. Formally, for
P C A, and d € Z,, we will define a (d-dimensional) property over P as any function I" : P—R?

1. Note that we use the terms scoring rule and loss here interchangeably; in the literature, scoring rules usually assign a
‘utility’ to an estimate p’ that needs to be maximized, while losses assign a ‘penalty’ that needs to be minimized. We
will use the latter interpretation for both (in general, one can be obtained from the other simply by switching signs).
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that maps each distribution p € P to a (d-dimensional) statistic I'(p) € R?. One such example
is the mean: I'(p) = p(p) = Ey~p[Y]. Other examples of one-dimensional properties include
the median, generalized quantiles, and many others. An example of a d-dimensional property is the
vector of the first d moments: T'(p) = (u1(p), - - -, a(p)) ", where p1;(p) = Eyp[Y?] Vi € [d];
more generally, a d-dimensional property is any vector of d one-dimensional properties.

Proper scoring rules/losses for eliciting properties of a distribution. Clearly, a (strictly) proper
scoring rule that elicits the full distribution can be used to elicit any property of the distribution.
However, this involves estimating an (n — 1)-dimensional property, which can be expensive for
large n and may not always be necessary, We will define a d-dimensional scoring rule/loss as a
function ¢ : [n] x RE—=R, and will say it is proper for a property I : P—R? if

VpeP: I(p) € argmingcpa By p[Y(Y,u)],

and strictly proper for I if the above minimizer is unique for all p € P. We will say a d-dimensional
property I' : P—R? is directly elicitable if there exists a strictly proper d-dimensional scoring rule
for . Further, if for some d’ > d, there is a directly elicitable d’-dimensional property I : P—R%
which can be used to recover I', i.e. for which there exists a mapping 7 : RY R such that
w(I'(p)) = I'(p) Vp € P, then we will say that I" is d’-elicitable. Clearly, every property is
(n — 1)-elicitable, and a d-dimensional property that is directly elicitable is d-elicitable.

Linear properties. A class of properties that are relatively better understood are linear properties.
Specifically, a property I" : P—R¢ is said to be linear if it can be written as a vector of expectations,
i.e. if there exists a function p : [n]—R? such that T'(p) = Ey.p[p(Y)] Vp € P. It is known that
linear properties are directly elicitable; moreover, as shown by Abernethy and Frongillo (2012), all
strictly proper scoring rules for a linear property have the form of a Bregman divergence:

Theorem 1 (Abernethy and Frongillo (2012)) Let P C A, and p : [n]—R? and let T : P—R?
be a linear property defined as T'(p) = Ey p[p(Y)] Vp € P. Then a scoring rule ) : [n] x RE—R
is strictly proper for T if and only if there is a strictly convex function ¢ : R*—=R such that

¥(y,u) = By(p(y),u) Vy € [n],ucR?.

3. Calibrated Properties

We now make a connection between the two main themes of this paper by defining the notion of
a calibrated property for a given loss £. As we will see, any strictly proper scoring rule for an
£-calibrated property will yield an /-calibrated surrogate loss.

Specifically, recall that given a loss ¢ : [n] x [k] =R, the goal is to learn a classifier that
approaches the optimal ¢-error under D, and that this is achieved by classifying according to h(z) €
Opt(¢,p(x)) for all z. This means that for any p € A,, (or more generally, p € P for some
suitable P C A,,), one is simply interested in finding an ¢-optimal prediction ¢t*(p) € [k], i.e. any
t*(p) that satisfies t*(p) € argmin,c () Ey~p[¢(Y,?)]. While we could consider the property t*(p)
directly, this is a discrete-valued property that is generally hard to estimate directly.” Instead, we

2. Note that in the probability forecasting/mechanism design setting, where there is an agent who holds information
about the probability distribution and the goal is to elicit this information from him by assigning a suitable reward/loss
using a scoring rule, eliciting a discrete-valued property poses no problem. However in the learning/statistics setting
that we consider here, where one gets random observations from the underlying distribution and the goal is to estimate
the property of interest from these observations by minimizing/maximizing a scoring rule, a discrete-valued property
leads to a discrete optimization problem that in general can be hard.
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will consider properties I' : P—R¢ that map p € P to a real number or vector I'(p) € R? from
which one can recover an £-optimal prediction t*(p) € [k] using a suitable mapping pred : R?— [k];
we will refer to such properties as ¢-calibrated properties:

Definition 2 (/-calibrated property) Let P C A,, T' : P—RY and pred : R%—[k]. We will say
(I, pred) is (-calibrated over P if for all p € P and all sequences {u,,} in R?,

u, - I'(p) = Ey-pll(Y,pred(u,)] = mbﬁ Ey. p[l(Y,t)].
te

Note in particular this implies that if (I", pred) is ¢-calibrated over P, then we have that for all
p € P, pred(I'(p)) € Opt(4,p). The sequence convergence condition is stronger and is needed
in the proof of the following result, which tells us that the problem of designing an ¢-calibrated
surrogate loss in d dimensions can be reduced to finding an /-calibrated property in d dimensions
that is (directly) elicitable, together with any strictly proper scoring rule for it:

Theorem 3 (¢-calibrated surrogates via elicitable /-calibrated properties) Let( : [n|x[k] =Ry
and P C A, Let T : P—R? and pred : R4 [k] be such that T is directly elicitable and (T, pred)
is (-calibrated over P. Let 1) : [n] x R®=R be any strictly proper scoring rule for T. Then
(1, pred) forms an (-calibrated surrogate over P.

Proof Let p € P. By strict properness of ¢ for I', we have that I'(p) is the unique minimizer of
Eyp[¢(Y,u)] over u € RY; for convenience, denote this unique minimizer by u*. Now, for each
t € [k], define '
regret, (t) := Eyp[((Y,t)] — min Ey p[¢(Y,1)].
telk]
Since (I, pred) is ¢-calibrated over P, we have pred(u*) = pred(I'(p)) € Opt(¢, p), and therefore
regretf)(pred(u*)) = 0. Let
€= min regretf)(t) )
te[k]:regrett, (£)>0

Then we have

inf Eypl(Y,u)] = inf Ey p[t(Y,u
uGRd:pre;(r'll)@pt(&p) vVt )] uERd:regreltg(Pred(U))Ze vaplt(Y;u)]

= inf EYNp[w(Yv u)] :

ucR%:regret? (pred(u)) >regretf, (pred(u*))+-e

Now, we claim that the mapping u — regretf) (pred(u)) is continuous at u = u*. To see this, note
that since (T, pred) is /-calibrated over P, for all sequences {u,, } in R? such that u,,,—u*, we have
regretﬁ) (pred(uy,)) — 0 = regretf) (pred(u*)). In particular, this implies that 35 > 0 such that

lu—u*lla<d = regretﬁ,(pred(u)) - regretﬁ,(pred(u*)) < €.
This gives

inf Ey~ Y,u)| > inf Ey. Y, u
ueR%:regret?, (pred(u)) >regretf, (pred(u*))+-e Y p[¢( )] ucRa:|ju—u*||2>6 Y p[,(?b( )]

> uiéléd Ey p[(Y,u)].

where the last inequality follows from the fact that u* is the unique minimizer of Ey . p[¢(Y, u)].
Since p € P was arbitrary, the result follows. |
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As a simple example, it is easy to see that (n — 1)-dimensional properties that preserve the full
probability structure (also called ‘link’ functions) are ¢-calibrated for any loss ¢, and that the cor-
responding strictly proper rules lead to class probability estimation (CPE) algorithms that estimate
the full conditional distribution p(z) (and are consistent for any loss ¢):

Example 1 (Link functions and class probability estimation (CPE)) Ler X : A,—R" ! be a
bijective mapping (sometimes called a multiclass ‘link’ function) with a continuous inverse A~ ".
Then the property I : A,—R" ! defined as T'(p) = X(p) is trivially (-calibrated over A,, for any
loss € : [n] x [k] =Ry to see this, take any mapping pred, : R"~1—[k] that satisfies pred,(u) €
Opt(¢, X1 (u)) Yu € R*L. This property is also trivially elicitable; indeed, this is the property
effectively elicited by class probability estimation algorithms using a multiclass proper composite
surrogate loss with link X (Vernet et al., 2011).

While estimating the full conditional distribution p(z) clearly yields consistent algorithms for any
loss /, this requires 7 — 1 dimensions and is not always needed. Indeed, for many losses 4, finding an
optimal classifier requires estimating only a restricted, lower-dimensional property of p(z). In such
cases, one can use a strictly proper scoring rule for the corresponding property to design a calibrated
surrogate loss operating in a smaller number of dimensions. We shall see several examples of such
surrogates below. In particular, in Section 4 we shall see examples of calibrated surrogate losses
that effectively elicit low-dimensional linear properties of p(z). In Section 5 we will consider how
to exploit low-dimensional nonlinear calibrated properties. In both cases, we will be particularly
interested in convex scoring rules that lead to convex calibrated surrogates.

4. Calibrated Surrogates via Calibrated Linear Properties

In this section we show that some recent works that have proposed general frameworks for obtaining
convex calibrated surrogates effectively amount to using proper scoring rules for calibrated linear
properties. In particular, we start by showing that the notion of ‘standardization function’ used
to obtain calibrated surrogates for certain subset ranking losses (Buffoni et al., 2011) corresponds
to a calibrated linear property (Section 4.1). We then show that the general framework described
recently by Ramaswamy et al. (2013) for obtaining convex calibrated surrogates for any loss £ in
d = affdim(L) dimensions also amounts to using a calibrated linear property (Section 4.2). Finally,
we show that for any loss £, the number of dimensions d needed to construct an ¢-calibrated linear
property is fundamentally lower bounded by affdim(L) — 1 (Section 4.3), making the construction
of Ramaswamy et al. (2013) essentially unimprovable as far as linear properties are concerned.

4.1. Subset Ranking Losses and Standardization Functions

Subset ranking refers to ranking problems such as those that arise in information retrieval, where
each instance z € X consists of a query with say r associated documents, and a label y € Y
represents some ‘preference’ or ‘relevance’ information about these documents in relation to the
query; for example a label could be a (possibly weighted) directed acyclic graph (DAG) on r nodes
indicating which of the r documents are more relevant to the query than others () = G, for some
finite set G, of possibly weighted DAGs on r nodes, with n = |G,.|), or simply a vector of 7 binary
or multi-valued relevance judgments for the documents () = {0,1}" withn = 2" or Y = [q|"
for some ¢ € Z4 with n = ¢"). In most such settings, given a new query with r documents,
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the goal is to rank the documents by relevance to the query, i.e. the prediction space is the set of
permutations of r objects, Y= Sy (thus & = r!). There has been much work in recent years on
understanding how to design convex calibrated surrogates for various subset ranking losses used
in practice, such as the (normalized) discounted cumulative gain (N)DCGQG), pairwise disagreement
(PD), mean average precision (MAP), etc (Cossock and Zhang, 2008; Xia et al., 2008; Duchi et al.,
2010; Ravikumar et al., 2011; Buffoni et al., 2011; Calauzenes et al., 2012; Lan et al., 2012).

In particular, Buffoni et al. (2011) introduced the notion of ‘standardization function’, and
showed that many previous results on calibrated surrogates for subset ranking could be explained
through this notion. Specifically, let )V be one of the label spaces above and y = Sy, and let
LY x )AJ—>R+ be any subset ranking loss. A standardization function for ¢ over P C Ay is
defined as any function s : JJ—R" such that

VpeP: argsort (Ey p[s(Y)]) C argmin,cs Eyp[l(Y,0)]. (1)
We show below that if such a function s exists, then the r-dimensional linear property I' : P—R"
defined as I'(p) = Eyp[s(Y")] is ¢-calibrated over P (see Appendix A for a proof):

Theorem 4 (Standardization functions yield calibrated linear properties) Let/:Y x S,—R,
be a subset ranking loss for some suitable ) as above, and let P C Ay. Lets : Y—R" be a
standardization function for £ over P. Let I : P—R" be the linear property defined as

I'(p) = Ey~p[s(Y)],
and let pred : R"— S, be any mapping that satisfies pred(u) € argsort(u) Yu € R". Then (I, pred)
is -calibrated over P.

Thus, if a subset ranking loss ¢ has a standardization function over P, then one can construct
an r-dimensional convex calibrated surrogate for £ over P by constructing a convex strictly proper
scoring rule for the calibrated linear property I' above (e.g. by using ¢(u) = %||ul|3 in Theorem 1).
Note that this is a huge savings over the naive CPE approach of Example 1, which would use |Y|—1
dimensions (for most subset ranking settings, || is exponential in r). The following example
illustrates one application of the above result:

Example 2 (Discounted cumulative gain (DCG) loss for subset ranking) The DCG loss for multi-
valued relevance vector labels (Y = [q|" for some q € Z), Ipcgar : [q]" X Sp— Ry (where T € [r]
is a cut-off value), is widely used in information retrieval and is defined as
g Wo=1i) _ 1
pot logy (i + 1)
for a suitable constant Z that ensures non-negativity of the loss. As shown by Buffoni et al. (2011),
the function s : [q]"—R" defined as s;(y) = 2%~ — 1Vi € [r] is a standardization function
for Ipcgar over Ay, and therefore it follows from Theorem 4 that any strictly proper scoring rule
for the corresponding linear property I' : Ay—R" given by T';(p) = Ey~p [2Yv‘1(i) — 1] Vi €
[r],p € Ay yields an pcgar-calibrated surrogate over Ay. In particular, using ¢(u) = 3||lul|3 in
Theorem 1, one gets the convex {pcgar-calibrated surrogate used by Cossock and Zhang (2008).

Ipcgar(y,o) = Z Vy € [q]",0 € Sy

Another example of an application of Theorem 4 involves the weighted pairwise disagreement
(WPD) loss for subset ranking (Duchi et al., 2010). In particular, Duchi et al. (2010) proposed a
convex r-dimensional surrogate for subset ranking which they showed to be calibrated w.r.t. the
WPD loss under a certain low-noise condition; this surrogate can also be viewed as a strictly proper
scoring rule for a linear property, composed with a link function (see Appendix B for details).
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4.2. Affdim(L)-Dimensional Surrogates of Ramaswamy et al. (2013)

Recently, Ramaswamy et al. (2013) gave a very general framework for constructing a convex cali-
brated surrogate (over the full simplex A,,) for any given loss ¢ : [n] x [k] =Ry in d = affdim(L)
dimensions. In particular, they gave the following result:

Theorem 5 (Ramaswamy et al. (2013)) Let £ : [n] x [k]—=RE be such that L = AB + c for some
A c R4 B e Rk andc € R. Let : [n] x RE—R, and pred : RY—[k] be defined as follows:

Yy, u) = S0 (u — Ayi)?,  pred(u) € argmingepy S0 Biru; -
Then (1, pred) is {-calibrated over A,,.

The proof of the above result (Ramaswamy et al., 2013) can be re-interpreted as showing that
the linear property I' : A,,—R? (where d = affdim(L)) given by I';(p) = Eyp[Ay] Vi € [d]
is {-calibrated over A,, via the above mapping pred; the convex least-squares type surrogate loss v
defined above is then simply the strictly proper scoring rule for this property resulting from using
¢(u) = %[|u||3 in Theorem 1. For completeness, we state this below and give a self-contained
proof in Appendix C. Note also that this implies that any other strictly proper scoring rule for this
linear property (such as those obtained by using Bregman divergences associated with other convex
functions ¢ in Theorem 1) will also lead to an /-calibrated surrogate over A,,.

Theorem 6 (Affdim(L)-dimensional calibrated linear properties) Let ¢ : [n] x [k|—=R" be such
that L = AB + c for some A € R4 B € Rk and ¢ € R. Let T : A,—R? be the linear

roperty defined as )
property def Li(p) = Ey~p[Ayi] Vi€ [d],
and let pred : RY—[k] be defined as in Theorem 5. Then (T, pred) is (-calibrated over A,

Ramaswamy et al. (2013) also applied Theorem 5 to obtain low-dimensional convex calibrated
surrogates for several subset ranking losses. For subset ranking losses with affdim(L) = r (such
as the DCG@r loss), the linear property constructed by the above result effectively provides a
standardization function over Ay. For other subset ranking losses, the two approaches can give
complementary results. For example, for the WPD and MAP losses, which have affine dimensions
O(r?) (Ramaswamy and Agarwal, 2015), it is known that there is no standardization function over
Ay (Buffoni et al., 2011), and that there is no convex calibrated surrogate over Ay in r dimensions
(Calauzenes et al., 2012; Ramaswamy and Agarwal, 2015). On the other hand, by Theorem 5, there
do exist ©(r?)-dimensional calibrated linear properties and therefore ©(r?)-dimensional convex
calibrated surrogates for these losses over Ay; moreover, as demonstrated in Example 8, one can
construct standardization functions for these losses over restricted sets of distributions P C Ay,
allowing for r-dimensional convex calibrated surrogates over such restricted sets P.

The following example illustrates a different application of the above result:

Example 3 (Hamming loss for sequence prediction) Consider a sequence prediction task with
y=) = {0,1}" (thus n = k = 2"). A widely used loss in this setting is the Hamming loss
lram = {0,1}" x {0,1}" =R, given by
Cram(y,t) = 200 1(t £ yi) Yy, t € {0,1}7.

As shown by Ramaswamy and Agarwal (2012), affdim(LHa™) < r, and therefore by Theorem 6,
one can construct an r-dimensional linear property I' : Ay—R" that is lyam-calibrated over Ay).
Any strictly proper scoring rule for I then forms an r-dimensional {y,m-calibrated surrogate over
Ay in particular, using ¢(u) = %HUH% in Theorem 1, one gets the surrogate given by Theorem 5.
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4.3. Lower Bound on Dimension of Calibrated Linear Properties

Theorem 6 shows that for any loss /, there is a linear property in d = affdim(L) dimensions that
is ¢-calibrated over A,,. In the following result, we show that this is essentially the best one can do
with linear properties (see Appendix D for a proof):

Theorem 7 (Lower bound on dimension of calibrated linear properties) Let ¢ : [n] x [k]—R.
Let T : A,—R% be a linear property. If there exists a mapping pred : R%—[k] such that (T, pred)
is {-calibrated over A\,,, then

d > affdim(L) — 1.

5. Calibrated Surrogates via Calibrated Nonlinear Properties

We now consider settings where one can exploit calibrated nonlinear properties to design convex
calibrated surrogates in an even smaller number of dimensions than is possible via linear properties.
We start by considering quantiles, which are 1-dimensional nonlinear (possibly interval-valued)
properties; quantiles can be directly elicited via convex strictly proper scoring rules and lead to
calibrated 1-dimensional surrogates for certain ordinal regression type losses (Section 5.1). We
then develop a general framework for designing low-dimensional convex calibrated surrogates un-
der ‘low-noise’ conditions by eliciting vectors of quantiles that yield ‘coarse’ information about a
distribution (Section 5.2). We conclude with a result that gives a necessary condition for a general
nonlinear property to be directly elicitable via a convex strictly proper scoring rule (Section 5.3).

5.1. Quantiles and Interval-Valued Properties

Quantiles and generalized quantiles have recently received significant attention in the property elic-
itation literature (Kiefer, 2010; Gneiting, 2011; Schervish et al., 2012; Grant and Gneiting, 2013;
Steinwart et al., 2014). These are nonlinear properties; moreover, for discrete distributions, these
properties can take a range of values over an interval. Therefore we will need to allow for interval-
valued properties I" that map each distribution p € A,, (or more generally, each p € P for some
P C A)) to a vector of intervals, I'(p) € 7% where Z denotes the set of all intervals on the real
line. In this case, we will say a scoring rule 1 : [n] x R®—=R is proper for I' : P—Z% if
VpeP: I(p)Cargmin,cge Eyp[t(Y,u)],

and strictly proper for I if the above holds with equality (i.e. no value u ¢ I'(p) is a minimizer).
Given a loss ¢ : [n] x [k] =R, we will say an interval-valued property I' : P—Z¢ is (-calibrated
over P if 3 pred : R4—[k] such that for all p € P and all convergent sequences {u,, } in R,

li_r)n u, € I'(p) = Ey p[l(Y,pred(u,)] = m%]ﬁEpr[E(Y, t)].
m—00 te

Again, it can be shown that a strictly proper scoring rule v for an ¢-calibrated interval-valued prop-
erty I' : P—Z% forms an /-calibrated surrogate over P.

Quantiles. For a € (0, 1), the a-quantile of p € A,, is defined as the interval

QaP) ={ueR:Py (Y <u)>aand Py p(Y >u)>1—a} €Z. (2)
It is known that the scoring rule ¢ : [n] x R—R_ defined as
vy, u) =1 —a) - (u—y)t +a-(y—u)+ 3)

is a convex strictly proper scoring rule for the a-quantile, i.e. for the property I' : A,,—Z defined as
I'(p) = Qu(p). For the medianI'(p) = Q1 (p), the above scoring rule becomes ¥ (y, u) = 5|u—y|.
2
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Example 4 (Generalized ordinal regression loss) Let k = n and o € (0,1), and consider the
generalized ordinal regression loss { : [n] x [n| =R defined as

gord(a) (:‘/7 t) = (1 - O[)(t - y)-i— + Oé(y - t)+ :
It is easy to see that the a-quantile I'(p) = Qo(p) is an lyq()-calibrated nonlinear property
over Ay,; the scoring rule 1 in Eq. (3) is therefore a 1-dimensional convex calibrated surrogate for
Cord(a) Over Ap. Note that this is a significant improvement over what can be achieved with linear
properties for these losses, e.g. for o = %, the loss matrix LYY has affine dimension n — 1, and
thus by Theorem 7, any calibrated linear property for this loss must have dimension at least n — 2.

5.2. Calibrated Surrogates under Low-Noise Conditions Using Vectors of Quantiles

We now give a general framework for constructing low-dimensional convex calibrated surrogates
under suitable ‘low-noise’ conditions by eliciting a vector of quantiles that forms a calibrated non-
linear property under such conditions.

The broad idea is to estimate ‘coarse’ information about a distribution p € A, using a vector
of quantiles. Specifically, for any integer s € Zy (s > 2) and for a suitable set of distributions
P C A, we define an (s — 1)-dimensional interval-valued property I'y : P—Z°~! as follows:

Ls(p) = Q1(p) x ... x Qazi(p) € T )

From the discussion in Section 5.1, it follows that the scoring rule 95 : [n] x RS~ =R, defined as

s—1 . .
i 1
oo = 32 (1) e+ () ) ®
1=
is a convex strictly proper scoring rule for I';.
In order to design calibrated surrogates using the above vector-of-quantiles property I, we will
find it convenient to define for each y € [n] a function IV, : R$~' 7., which for each u € R*~!

counts how many times the label y appears in the vector |u] (where [u| = (|u1], ..., [us—1]) T):
s—1
Ny(u) =) 1(y = |u;]) YueR!,
i=1

The following lemma shows that eliciting any u € I's(p) allows one to elicit for each y € [n] an
interval of width at most % containing p,:

Lemma 8 (Vectors of quantiles give interval estimates for probabilities) Ler P C A,, and p €
P. Let Ty : P—I°~! be defined as in Eq. (4) above, and let u € T's(p). Then for each y € [n), we
have [

Ny(u)=1 Ny(uw+l1 .
y(;l) , y(;l) ] lfNy(u) >1
Dy € L )

[07 g} lfNy(U-) =0.
Proof Lety € [n]. If N,(u) = 0, then no quantile in I';(p) consists of the singleton interval {y},
and consequently, we must have p, < % Now suppose IV, (u) > 1. Then the number of quantiles

in I's(p) that consist of the singleton interval {y} is at least N,(u) — 2 and at most N, (u), and
Ny(u)—1 < < Ny(u)+1 m
s SPy = :

S

therefore we must have

10
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Figure 1: Illustration of quantile vector property I's(p) used to elicit coarse information about a
distribution p € A,, (here n = 6, s = 5). See Example 5 for details.

Example 5 (Quantile vectors and probability interval estimates) Consider the example shown
in Figure I (n = 6, s = 5). The figure shows the % % % and %-quantiles of the probability vector
p = (0.15,0.45, 0.15, 0.1, 0.1, 0.05) T € Ag. Here Q1(p) = {2}, Q:(p) = {2}, Q:(p) =
(2, 3], and Q%(p) = {4}, and so T'5(p) = {2} x {2} x[2, 3] x {4}. Consideru = (2, 2, 2.5, 4)" €
I's(p). As can be seen, here N1(u) = N3(u) = Ns(u) = Ng(u) = 0; Na(u) = 3; and Ny(u) =
1. Therefore by Lemma 8, we obtain the following interval estimates for elements of p from u:
p1, D3, D5, e € [0,0.2]; po € [0.4,0.8]; and py € [0,0.4]. Similarly, consider w' = (2, 2, 3, 4) T,
which also lies in T's(p). In this case, we would have N1(u') = N5(u’) = Ng(u') = 0; Na(u') =
2, and N3(u') = Ny(u') = 1, and therefore we would get the following interval estimates for
elements of p from u': p1, ps, ps € [0,0.2]; p2 € [0.2,0.6]; and p3, ps € [0,0.4].

Thus vectors of quantiles give coarse information about the probability distribution p € A,,,
and can be useful wherever it is sufficient to elicit not p exactly, but rather some intervals in which
py lie. In particular, this can be useful for designing low-dimensional convex surrogates that are
calibrated for a loss over a suitable set of ‘low-noise’ distributions. We give two such examples
below, one for the multiclass 0-1 loss, and one for multiclass classification with a reject option.

Example 6 (O(log(n))-dimensional convex surrogate calibrated for 0-1 loss under low-noise
condition) Let k = n and consider the multiclass 0-1 loss £y.; : [n] x [n] — Ry defined as

boa(y,t) =1Ly #1).

Consider the following ‘low-noise’ condition, under which the highest-probability element is sep-
arated from the next highest-probability element by a probability difference of at least m:

2 /
lloga(a)] Y #y}'

Then it follows from Lemma 8 that for any p € P&\}, by estimating a vector u € I'fog, ()] (p),
one can accurately identify the largest-probability element under p, argmax, ¢, py (and make an
optimal prediction under {o.1). Therefore the ([logy(n)| — 1)-dimensional property T'fiog, (n)] is
lo-1-calibrated over P using pred®! : RMeg2(M1=1_[n] sarisfying

P = {p € Ay, : Jy € [n] such that py > p, +

pred”!(u) e argmax, cp, NVy(u).

For large n, for which the above low-noise condition is quite broad,” this construction gives a
significant improvement over the n — 1 dimensions needed for a convex surrogate to be calibrated
for £o.1 over A, (Ramaswamy and Agarwal, 2012).

3. Indeed, the low-noise condition PN here includes many probability distributions that are excluded from the com-
monly studied ‘dominant-label” condition Py’ = {p € A,, : maxycn] Py > %}, which is required for example for
the common (n-dimensional) Crammer-Singer surrogate to be £y.;-calibrated.

11
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Example 7 (O(log(n))-dimensional convex surrogate calibrated for multiclass classification
with a reject option under low-noise condition) Consider now a multiclass classification problem
with a reject option. Here k = n + 1, with the prediction (n + 1) corresponding to the ‘reject’
option; a common loss in this setting is the loss lrject : [n] % [0+ 1] = Ry defined as

1y+t) iften]

Erejeot(yat) = { ift=n+1

N[ =

Consider the following ‘low-noise’ condition, under which each probability element is separated
1 1.

from 5 by at least oz, )T

1 1 1 1

o 2 Togait) <

reject

Then it follows from Lemma 8 that for any p € Pry , by estimating a vector u € I'[1og,(n)] (P),

I

one can accurately identify whether any label has probability greater than % under p (and make an
optimal prediction under lrject). Therefore the ([logy(n)]| — 1)-dimensional property T 155, (n)] IS

Ureject-calibrated over P{?fa using pred et . RIog2 (”ﬂ_l—>[n] defined as follows:

argmax,cr, Ny(u) if Jy € [n] such that Ny(u) > M

n+1 otherwise.

predreject (11) — {

To our knowledge, the above approach gives the first general framework for designing low-noise
conditions together with convex surrogates that are calibrated under these conditions for different
losses. In particular, the framework allows one to develop convex calibrated surrogates under any
low-noise condition where a coarse estimate of the underlying probability vector suffices to make
an optimal prediction under the loss of interest.

5.3. Necessary Condition for Convex Elicitability

As we have seen, linear properties and quantile-based properties are always directly elicitable by
a convex strictly proper scoring rule. For general nonlinear properties, the following result gives a
necessary condition for convex elicitability (see Appendix E for a proof):

Theorem 9 (Necessary condition for convex elicitability of a property over A,) LetT : A, —R%
If U is directly elicitable via a convex proper scoring rule, then
dim(T'(u)) > n—d—1 VYuc T(relint(A,)).

Corollary 10 Let T : A,—R? be d'-elicitable via a convex proper scoring rule in d’ > d dimen-
sions. Then

d > n—dimT (u)) -1 Vue(relint(A,)).
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Appendix A. Proof of Theorem 4

Proof Let p € P, and let {u,,} be any sequence in R" such that u,,—I'(p). We will show that
By pl0(Y, pred(u))]— minyes, Bypl(Y,0)].
Let 0 := min; jep):r,(p)-r; (p)|>0 IL'i(P) — I'j(p)|. Since uy, —T'(p), we have IM such that

Vm>M: |Jupm—T(p)2<d.

Now clearly, for all m > M and i,j € [r], we must have I';(p) > I'j(p) = wmi > Umj
(else the Lo-distance between u,, and I'(p) would exceed ). Therefore, for all m > M, we
have argsort(uy,) C argsort(I'(p)), and thus Ey ., [¢(Y, pred(uy,))] = Eyp [((Y, pred(I'(p)))].
Also, by construction of pred, we know that Ey ., [¢(Y, pred(I'(p)))] = min,cg, Eyp[l(Y,0)].
This implies that for all m > M, Ey ., [¢(Y, pred(u,,))] = mingeg, Eyp[l(Y, 0)].

Since p € P was arbitrary, this proves the result. |

Appendix B. Additional Example of Application of Theorem 4: Viewing Subset
Ranking Surrogate of Duchi et al. (2010) as a Strictly Proper Scoring
Rule for a Linear Property

Example 8 (Weighted pairwise disagreement (WPD) loss for subset ranking) Another popular
subset ranking loss is the WPD loss for weighted preference graph labels, bwpp : Y X S,—Ry,
where ) is some finite set of weighted DAGs on r nodes; for a weighted DAG G = ([r], E, W) ¢
Y, where ES C [r] x [r] denotes the set of edges of G and WY € R" denotes the edge weights
with Wg > 0iff (i,7) € EC, and for a permutation o € S,, this loss is defined as

bomm(Gr) = W (10010 > o) + S100) =)

For any p € Ay, define VVp EGNp[WG and EP = {(i,j) X [r] Wg > Wﬁ}. Duchi
et al. (2010) considered the followmg set of ‘low-noise dlstrlbutlons p € Ay:

PP = {p € Ay : the unweighted graph GP = ([r|, E®) is a DAG, and
Vik €] WR>Wh — S (Wh-WE) >S5, (Wh-wh)}.

Itis easy to see that the functions : Y—R" defined as s;(G) = >\ _, (Wg —Wﬁ) Vi € [r] is a stan-
dardization function for fwpp over P&PD, and therefore by Theorem 4, any strictly proper scoring
rule for the corresponding linear property T : PYCP—R" given by I';(p) = ZT (Wp Wp) Vi €
[r],p PWPD yields an {wpp-calibrated surrogate over P\ WPD The convex r-dimensional surro-
gate shown to be lwpp-calibrated over P}y WPD by Duchi et al (2010) can be viewed as a strictly

proper scoring rule for this property composed with a link function.
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Appendix C. Proof of Theorem 6

Proof Note first that for any p € A, and ¢ € [k], we have

d d
Eypll(Y,)] = > py ( > AyiBi + c>
=1 =1
yd d
= Z ZpyAyiBit +c

y=1 i=1

d d
= Z B ZpyAyi +c

= Z BiEyp|Ayi] + Z ByT(p (6)

=1

Now, let p € A, and let {u,,} be any sequence in R such that u,,—T'(p). For each m, define
tm := pred(u,,) € [k]. Then we have
EYNp [K(Y> tm)} {n[llﬁ EYNp [E(Y> t)]
d

= Y By, Ti(p) — min thr( ), byEq.(6)
° te[k]

d
= Y Bit,, (Ti(p) — tmi) +ZBltmumZ mmZBnr (p)
=1 =1
d

d
Z: itm ( i (P) Umz) ?;[1]3 - itUms ?Elbﬁ ; atl g (p)

where the last equality holds due to the definition of pred. It is easy to see that the term on the
right hand side goes to zero as m—oco. Thus we get that Ey p [((Y, t,)|— mingepy Eyp[€(Y,1)].
Since p € A,, was arbitrary, this proves the result. |

Appendix D. Proof of Theorem 7
For each ¢ € [k], denote £; = (£(1,t),--- ,£(n,t))". We will need the following definition:

Definition 11 (Trigger Probabilities Ramaswamy and Agarwal (2012)) Let { : [n] x [k] — R..
For each t € [k], the set of trigger probabilities of t with respect to { is defined as

Qf = {pe,:p'(l—Ly)<0 vV c[k]} ={peA,:tecOptp)}.
Proof Suppose Jpred : R?—[k] such that (', pred) is /-calibrated over A,,. We will show that
d > affdim(L) — 1.

Suppose for the sake of contradiction that d < affdim(L) — 1. Lets : [n]—R? be such that
['(p) = Ey~p[s(Y)] Vp € A, and define U € R¥" as u;;, := s;(y) Vi € [d],y € [n]. Observe
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(0,1,0)

(17070) (%707 %) <0707 1)

Figure 2: Illustration of steps in the proof of Theorem 7. We first find p € Q{ N Qf, and then
perturb p along § and —4 to find p; and po.

that I'(p) = Up. For each i € [d], let u; € R™ denote the i-th row vector of U, so that U =
[u;---uy]'. Define U := [u;---ug1]", where 1 € R is the all-ones vector.

The main idea of the proof is to find p1,p2 € A, such that Up; = Upy but Opt(¢, p1) N
Opt(¢, p2) = 0; this will contradict the fact that (', pred) is ¢-calibrated over A,,. We find such
p1, P2 by first finding p € A, that lies at the intersection of two trigger probability sets, and then
perturbing it along suitable directions &, — (see Figure 2). The following steps give more details.

Step 1: Let i,j € [k] be such that ¢; — £; ¢ col(UT) and ofn Qf # (). To see that such
i,j always exist, note that by our assumption that d + 1 < affdim(L), 3/, ;' € [k] such that
Ly — Ly ¢ col(UT). If Q5 N Qﬁ, # (), define ¢ := ¢’ and j := j’ and we are done. Suppose

E g _ . . . . oqe [ E g
that Q;, N Q = (. Consider a sequence of neighboring trigger probability sets Q; , Qi 95
such that iy = 7/, i,, = j/, and Qf N Qi ,, # Oforallr e [m— 1]. We can write £ — £;; =

(8iy — £iy) + (iy — &) + -+ (L, — £,). Since £y — £; ¢ col(UT), Ir € [m — 1] such
that £; — £; ¢ col(UT). Define i := 7 and j := r + 1. Then we have £; — L ¢ col(UT) and
oin Qﬁ # 0.

Step 2: Fix i, j as above, and let p € Q¢ N Q? Nrelint(A,,) such that p ¢ Qf Vt # i, j (which
means that p' £; = pTEj < p '€ Vt # i, 7). The trigger probability sets form a power diagram of
the probability simplex, which implies that Q¢ N Qﬁ ¢ bndry(A,,) and Q¢ N Qg ¢ QU Vt # i, 7;
therefore, such a point p always exists.

Step 3: Let § € R” such that U§ = 0 and (¢; — £;) 78 # 0. To see that such a § always exists,
let p = rank(U). Observe thatp < n—1as d < affdim(L)—1andp < d. Let vy, - - - ,Vn—p € R"
be an orthonormal basis of the null space of U. Clearly, span(uy,--- ,ug,1, vy, -+, vy—p) = R",
and therefore, dovy, -+, g1, 51, -+, Bn—p such that £;—£; = Zle Ut agi 1+ 07 Brv,.
Since £; — £; ¢ col(UT), 3¢ € [n — p] such that 3, # 0. Take & = v,. By construction, Ud = 0.
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Moreover,
d n—p
r=1 r=1
= 6qHVq||%7 since UVq:()and V;rVqZOVr;Aq
# 0.

Thus we have shown that 3§ € R” such that U§ = 0 and (€; — £;)T 8 # 0. In the remainder of the
proof we will assume without loss of generality that (¢; — £;) "8 < 0 (the case (£; —£;) 6 > 0 can
be treated similarly as below).
Step 4: This is the most crucial step in the proof in which we find p;, p2 by perturbing p along
4 as shown in Figure 2. We have to ensure: (1) This perturbation leads to valid probability vectors;
(2) One of the perturbed vectors lands in Qf and the other one lands in Q?.
Let a be the least positive integer such that Vr € [n], |5, /a| < min(p,, 1—p;), and let &’ := §/a.
Next, let b be the least positive integer such that V¢ # i, j,
pl(&—£) > (8/b)"(&;—4£), 7
p' (b —4) > (8/b)' (b —¢), @)

and define 6" := &'/b. Now, Ud” = 0 and (¢ — £;)76" # 0. Define p; := p + 8" and
p2 := p — &”. We can see that p;, > 0 and po, > 0Vr € [n]. Also,

1'p; = 1'p+17¢
= 140, since Us” =0and 1 € col(U ")
= 1.
Similarly, 1Tp2 = 1. Therefore, p; and ps are valid probability vectors in A,,.
Now, we claim that p; € Qf and p; ¢ Qf Vt # i. We have,
6 —£)"'p1 = (& —£)"p+ (& —£)"d"
= 0+ (£ —2)"d", since p € Q) N Qf
< 0.
This gives p1 ¢ Qﬁ. Moreover, Vt # i, j, we have
(i)' pr = p'(&i—€)+6" (& —£)
< 0, by Eq. (7) .
Thus p; € Qf and p1 ¢ Q Vt # 4. Similarly, ps € Qf and py ¢ Qf Vt # j. Therefore,
Opt(¢, p1) N Opt(¢, p2) = 0. Moreover,
Up; = Up+U¢”’
= Up, since Ud' = 0
= Upsy.
This gives us a contradiction since I" will not be able to differentiate between p; and p2, even though
the optimal predictions for them with respect to ¢ are different; in particular, we get pred(I'(p1)) =
pred(Up;) = pred(Upsz) = pred(I'(p2)), and so we cannot have pred(I'(p1)) € Opt(¢, p1) and

pred(I'(p2)) € Opt(¢, p2), i.e. (I', pred) cannot be ¢-calibrated over A,,. Therefore we must have
d > affdim(L) — 1. [ |
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Appendix E. Proof of Theorem 9

Proof (of Theorem 9) Suppose I' is directly elicitable via a convex proper scoring rule, and let
1 : [n]xR? — R be a convex strictly proper scoring rule for I'. We will show that dim(I'~!(u)) >
n—d—1VYu e I'(relint(A,)).
Let p € relint(A,,), and let u* = I'(p). Since %) is strictly proper for I', we have
u* = argmincga Eyp[(Y,u)].

Moreover, since 1) is convex, we have
n
0 € AEynplp(You)]) = Y p,du(y,u’),
y=1

where 01 (y, u*) denotes the set of subdifferentials of ¢)(y, u) at u* (if ¢)(y, -) is differentiable, each
such set is a singleton). Therefore for each y € [n], 3w, € 99 (y, u*) such that 22:1 pywy = 0.

Let A = [wy - wp] € R and let
H={qeA,:Aq=0}={qeR":Aq=0,1"q=1,-q <0},

where 1 € R" is the all-ones vector. We have p € H, and also —p < 0. Therefore, by Lemma 14
of Ramaswamy and Agarwal (2012), we have

pu(p) = n—(d+1),
where 113,(p) is the feasible subspace dimension of H.* Now,
n
qeH = Aq=0 = O0¢ quaw(y,u*)
y=1

= u" = argmingega By q[¢(Y, u)]
= TI'(q)=u",

which gives % C I'"!(u*), and therefore,
dim(T ' (u") > proi)(®) > pu(P) > n—(d+1),

Since p € relint(A,,) was arbitrary, the result follows. [

4. The feasible subspace dimension of a convex set C at p € C is defined as the dimension of the subspace F¢(p) U
(=Fc(p)), where Fe(p) is the cone of feasible directions of C at p (Ramaswamy and Agarwal, 2012).
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