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Abstract. Machine learning ranking methods are increasingly applied to rank-
ing tasks in information retrieval (IR). However ranking tasks in IR often dif-
fer from standard ranking tasks in machine learning, both in terms of problem
structure and in terms of the evaluation criteria used to measure performance.
Consequently, there has been much interest in recent years in developing ranking
algorithms that directly optimize IR ranking measures. Here we propose a family
of ranking algorithms that preserve the simplicity of standard pair-wise ranking
methods in machine learning, yet show performance comparable to state-of-the-
art IR ranking algorithms. Our algorithms optimize variations of the hinge loss
used in support vector machines (SVMs); we discuss three variations, and in each
case, give simple and efficient stochastic gradient algorithms to solve the result-
ing optimization problems. Two of these are stochastic gradient projection algo-
rithms, one of which relies on a recent method for /1 ..-norm projections; the
third is a stochastic exponentiated gradient algorithm. The algorithms are sim-
ple and efficient, have provable convergence properties, and in our preliminary
experiments, show performance close to state-of-the-art algorithms that directly
optimize IR ranking measures.

1 Introduction

Ranking methods in machine learning have gained considerable popularity in informa-
tion retrieval (IR) in recent years [1-12]. Although the benefit of using such methods
is rarely in question, there has been much debate recently about what types of ranking
algorithms are best suited for the domain. In particular, ranking tasks in IR often dif-
fer from standard ranking tasks in machine learning in a variety of ways: for example,
often in IR, one does not wish to learn a single ranking over all objects (in this case
documents), but rather wishes to learn a ranking function that can rank different sets of
documents with respect to different queries. Moreover, the ranking performance mea-
sures used in IR are usually different from standard pair-wise ranking measures, often
focusing on the ranking quality at the top of a retrieved list.

These differences have led to several questions about how to best design ranking
algorithms for IR, as well as several worthwhile adaptations and improvements of ex-
isting ranking algorithms [4, 7, 13]. For example, Qin et al. [13] argue that loss functions
in IR should be defined at the level of queries rather than individual documents or doc-
ument pairs. There has also been much discussion on pair-wise vs. list-wise ranking



algorithms, where the latter employ loss functions that directly take into account the
total order in a ranked list [14].

More recently, there has been much interest in algorithms that attempt to directly
optimize ranking measures that are popular in IR, such as the normalized discounted
cumulative gain (NDCG), mean average precision (MAP), and others [15,5,8,7, 16,
10-12]. For example, Joachims [15] proposed a general method, inspired by large mar-
gin methods for structured prediction [17, 18], for optimizing multivariate performance
measures that include as special cases the area under the ROC curve and measures
related to recall and precision; this was extended by Yue et al. [8] to a support vec-
tor method for optimizing the MAP. Large margin structured prediction methods have
also been used by Chapelle et al. [16] to optimize the NDCG. Other algorithms that
attempt to optimize the NDCG include the LambdaRank algorithm of Burges et al. [5],
the AdaRank algorithm of Xu and Li [7], the SoftRank algorithm of Taylor et al. [9],
the regression-based algorithm of Cossock and Zhang [11], and the recent algorithm
of Chapelle and Wu [12]. These algorithms have shown considerable promise, often
resulting in significant improvement in performance over standard pair-wise ranking
algorithms, such as RankSVM [19, 2] and RankBoost [20], applied to IR ranking tasks.

Here we propose a family of algorithms that preserve the simplicity of the pair-wise
approach, yet exhibit performance comparable to state-of-the-art IR ranking algorithms.
Our algorithms are based on optimizing variations of the hinge loss used in support vec-
tor machines (SVMs). We start with a pair-wise ranking loss that takes into account the
degree of difference in the relevance (with respect to a query) of a pair of documents,
and then use this to construct a query-level loss function. We discuss three variations of
the query-level loss; in each case, we provide a stochastic gradient algorithm for solving
the dual of the corresponding optimization problem. Two of these are stochastic gradi-
ent projection algorithms, one of which relies on a recent algorithm for projections onto
l1,00-norm constraints [21]; the third is a stochastic exponentiated gradient algorithm,
similar to exponentiated gradient algorithms developed for structured prediction [22].
The resulting algorithms are simple and efficient, have provable convergence proper-
ties, and in our preliminary experiments, show performance close to state-of-the-art
algorithms that optimize the MAP or NDCG.

The rest of the paper is organized as follows. In Section 2, we describe more for-
mally the problem setting we consider. Section 3 gives our algorithms; this is followed
by our experimental results in Section 4. We conclude with a discussion in Section 5.

2 Preliminaries

The problem we consider can be described as follows. There is a query space Q and a
document space D. The learner is given as training examples m queries ¢, ...,q™ €
Q, the ith query ¢* being associated with n; documents d¢, ... ,dfli € D, together
with real-valued relevance labels y; € R denoting the (human-judged) relevance of
document dj to query ¢*, and the goal is to learn from these examples a ranking function
which, given a new query ¢, can rank the documents associated with the query such that
more relevant documents are ranked higher than less relevant ones.



More formally, as is standard in the use of machine learning methods in IR, we
shall assume a query-document feature mapping ¢ : Q x D—R? that maps each query-
document pair to a d-dimensional feature vector. The learner then receives labeled train-
ing examples of the form S = (S',...,5™), where S* = ((¢!, yl) , (qﬁﬁw yi )
is the training sample associated with the ith query; here qb; = ¢(q, j). The goal is to
learn a real-valued ranking function f : R?—R that ranks accurately documents asso-
ciated with future queries; f is taken to rank a document d; associated with a query g
higher than a document dy, if f(¢(q,d;)) > f(¢(q,dr)), and lower than dj, otherwise.
In this paper, we shall be interested in linear ranking functions f,, : R?—R given by

fw(d)) =w-¢

for some weight vector w € R%.

Let us consider first the loss of such a function fy, on a pair of documents dl di
associated with query ¢’. In earlier SVM algorithms for ranking [2, 19], the followmg
pair-wise hinge loss was often used:

where [a]; = max(0, a) and
Zj = sign(y; — yi) -

These algorithms then consisted of minimizing an ls-regularized version of the average
pair-wise hinge-loss across all document pairs and all queries. In particular, if

Ri = {(j,k) |y > yi.}

denotes the set of ‘preference pairs’ for the ith query, then these early algorithms learned
w by solving the following optimization problem:

.1 i
H‘IAIIH §||W||2 | Z Z ZH d)j7yj) (d)kvyk)) ) (l)
2 1 i=1 (j,k)ER;
where C' > 0 denotes an appropriate regularization parameter. The pair-wise hinge loss
ly can be seen as a convex upper bound on the following binary mis-ranking error,

which simply assigns a constant penalty of 1 to each mis-ranked pair of documents:

£0-1(W7(¢;ay;)7(¢i"ylle)) ( kW (¢ ¢k) < 0)

where 1(%)) is the indicator function that takes the value 1 if the predicate ¢ is true, and
0 otherwise. Thus, early SVM ranking algorithms ignored the possibility of a need to
assign different penalties to different mis-ranked pairs, which arises when documents
can have multiple relevance levels y; Recently, Cao et al. [4] addressed this issue by
suggesting a modification to the above pair-wise hinge loss; however, the loss they
propose relies on certain heuristics in order to set some parameters. Here we use the
following simple and intuitive variation of the pair-wise hinge loss, which takes into



account the different relevance levels of different documents; this loss was also used
recently in the context of standard ranking algorithms in [23]:

gH,reI(wa (¢;7y;)7 (d);cvyllc)) = “y; - yllc| - Z;kw : (Qb; - d);c)]Jr .

This can be viewed as a convex upper bound on the following relevance-weighted mis-
ranking error:

bel(W, (05, 95), (D ) = |y — il 1 (25w - (¢ — b2) <0) .

Thus, under /¢ (and therefore fH re), mis-ranking a pair of documents with relevance
labels 1 and 5 incurs a larger penalty than mis-ranking a pair of documents with rele-
vance labels 1 and 2.

Our main interest will be not in the above pair-wise loss ¢y rg itself, but rather
in query-level loss functions derived from it. In particular, we shall be interested in
learning algorithms that select w € R¢ as follows:

I T O ;
min §||W|| +E;L(W,S)

where L(w,S?) is an appropriate loss term that measures the ranking loss incurred
by fw on the training sample S* associated with the ith query, and C' > 0 acts as a
regularization parameter.

We note that our approach is different from recent large margin methods aimed at
directly optimizing measures such as the MAP or NDCG [8, 16], which also use query-
level loss functions based on the hinge loss. In particular, the query-level loss L in these
approaches takes the form

L(w,8") = max [A(m,m) = (gw (@1, dn,) my) = gw (@Y, 80,) )],

where 7 denotes either a permutation of the n; documents (for NDCG) or a vector of
binary assignments to the documents (for MAP, in the case of binary relevance labels
y}); m, denotes a ‘true’ permutation or binary assignment vector induced by the rel-
evance labels y;, A(m,m,) measures the loss incurred in predicting 7 instead of T,
(which can be taken to be one minus the NDCG or MAP of 7 relative to m); and gy
is an appropriately defined function that assigns a score to each permutation or binary
assignment vector over the documents, and is used to predict such a permutation or as-
signment vector (rather than directly rank the documents based on the scores w - ¢} as
in our case) via

= arng?'X [gw((d)i? EEE) d):h)ﬂT)} :

See [8, 16] for further details of such approaches.

In contrast, the query-level loss L in our case will be constructed from the simple
and intuitive relevance-weighted pair-wise hinge loss ¢ r¢| described above. In the fol-
lowing, we describe three different constructions for L, and in each case give efficient
stochastic gradient algorithms to solve the resulting optimization problems.



3 Algorithms

As discussed above, the ranking algorithms we consider learn a linear ranking function
fw : RI=R by solving an optimization problem of the following form:

m

1
m“i,n §||W||2 ZL w, S

where L(w, S%) denotes a query-level loss function that will be constructed from the
relevance-weighted pair-wise hinge loss £y r¢| described above.

3.1 Stochastic gradient projection algorithm for average pair-wise loss

The first construction we consider for the query-level loss L is the following average
pair-wise loss:

Lll-|,rel( ‘ Z CH rel (W ¢]ay]) (‘Mwylk))

(JkER

Notice that in addition to the relevance weighting in £y re|, this differs from the early
SVM ranking algorithms described in Section 2 (see Eq. (1)) in that the loss is nor-
malized by query, taking into account different numbers of document pairs for different
queries. While one could in principle use stochastic subgradient methods (such as those
of [24]) to directly solve the resulting optimization problem, we focus here on a dual
version as this will facilitate the development of similar algorithms for the other two loss
formulations. Using standard techniques involving the introduction of slack variables,
we can write the minimization problem corresponding to the above loss as

mip | flwl? + Z " D S
’5 (4,k)ER;
subject to
k Z 0 v i7 ja k
> (y;— ) —wo (¢ —))  Vigk
Introducing Lagrange multipliers and taking the Lagrangian dual then results in the
following convex quadratic program (QP):

Hlln Z Z Z Z ] e ]k]'k' Z Z (Y5 — Yi)

i=1 (j,k)ER; i'=1(j',k')ERy i=1 (j,k)ER;
subject to

where

Qi = (@ = 1) - (9] — dio).



Solving the above QP using standard QP solvers would take O( (37", |Rl|)3) time,
which is O(m3n®) if n; = n and |R;| = O(n?) for all i. Instead, we use a simple
stochastic gradient projection method which starts with some initial values a(*) for a,
and on each iteration ¢, randomly selects a single query ¢ and updates the corresponding

| R;| variables a§ k(t) using a gradient and projection step:

oY Po, (ai(t) -~ mVN)) 7

o/l(tH) — o/l(t) fori' #1,

where 7, > 0 is a learning rate; vl € RI%:l is the partial gradient of the objective
function in the above QP with respect to o, evaluated at a®); 2, = {a’ € RIFl :
0 <afy < % V(j,k) € R;} is constraint set for a’ in the above QP; and Py,
denotes Euclidean projection onto (2;. The projection onto the box constraints in {2;
is straightforward: values of aj- . outside the interval [0, %] are simply clipped to
the interval. The convergence proof for standard gradient projection methods can be
extended to show that if n; = % for some constant 79 > 0, then the above stochastic
gradient projection algorithm converges (in expectation) to an optimal solution, and
moreover, the number of iterations required to reach a solution whose objective value
(in expectation) is within € of the optimal is O(m?/e?); we omit the details for lack
of space. An iteration that updates the variables associated with the ¢th query takes
O(|R;|) time; this leads to a total of O(m?n?/e?) time if n; = n and |R;| = O(n?) for
all 7. On solving the above QP for o, the weight vector w can be recovered from « in
a standard manner.

3.2 Stochastic exponentiated gradient algorithm for maximum pair-wise loss

The next construction we consider for L is the following maximum pair-wise loss:

L% (w, 8% = max [lsa(W, (65:)), (S, 01))] -
Define the ranking margin of w on a pair of documents (j, k) € R; as w - (qS; — (]52) if
w- (¢, — 1) < (y: —}). and (y} —y},) otherwise. Then the resulting algorithm in this
case will maximize not the average ranking margin over document pairs associated with
a query, but rather the minimum ranking margin across all document pairs associated
with each query. Again, we can write the corresponding minimization problem as

min | = ||w|]* + — &
i 1o+ €3]
subject to

£€>0 Vi

&= Wi—vi)—w- (95 —¢) Vi gk
Introducing Lagrange multipliers and taking the Lagrangian dual then results in the
following convex QP (after an appropriate scaling of variables, and introduction of an
additional variable o, for each ):
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52: Z Z jka 'k'* Jk,j/k’ Z Z l/j—yk)

1 (G.k)ER;: i'=1(5' k") ERy i=1 (j,k)ER;

subject to

ah+ Y al=1 Vi

(4,k)ER;

aby, o >0 Vi, jk
The constraints in the above problem force a to lie in the simplex A; of distributions
over |R;| + 1 elements for each 4. This allows us to derive an efficient exponentiated
gradient (EG) algorithm in this case which starts with an initial set of distributions

al) e A X ...x A,,, and on each iteration ¢, updates the distribution associated with
a single randomly chosen query ¢ using an exponentiated gradient step:

RGN a;ﬂk( )eXp( noV} ()) R ag(”
Yk 7t o VAOK
., 1 ./
a’ (t+)<— i fori’ # 1,

where 79 > 0 is a constant learnmg rate; V‘ ®) is the partial derivative of the objective

in the above QP with respect to ol e evaluated at a(t); and Z® is chosen to ensure

™t ¢ A;. The algorithm can actually be implemented in a way that requires only

O(n;) time per iteration rather than O(|R;|) time using ideas developed for structured
prediction problems [22]; we omit the details for lack of space. As in [22], the resulting
algorithm can be shown to converge (in expectation) to an optimal solution; if n; = n
for all 4, then the time required to reach a solution whose objective value (in expec-
tation) is within € of the optimal is O (2 (|A|.Da* @] + Q(aV) — Q(ar))),
where o), a* denote the initial and optimal sets of distributions, respectively; Q(cx)
denotes the objective function in the above problem; D[a*||a(1)] denotes the sum of

. . ; (1 . .
the Kullback-Leibler divergences between o’  and o™ over all i, and |A| is the
largest entry in the matrix whose entries are A, j x) i/ j/,k') = %Q;’,z’j,k/.

3.3 Stochastic gradient projection algorithm for maximum-average pair-wise
loss

In taking the average or maximum pair-wise ranking loss as above, one does not distin-
guish ranking errors at the top of the list from ranking errors at the bottom. However,
in practice, and in IR in particular, ranking errors at the top of the list are often more
costly (for example, in web search, the accuracy of the first few web pages returned by
a search engine is paramount). To this end, we consider a hybrid maximum-average
pair-wise loss construction for L:

LH rel(w7 Si) . |Pk‘>0 ‘Pk| Z Iy ret (W ¢jayg) (¢Z,y,’€))7



where Py = {j |y} >y} denotes the set of documents that are preferred to dj,.
To see why this loss term might penalize ranking errors at the top more heavily than
ranking errors at the bottom, note that the cost of each ‘mis-ranking up’ of a document is
inversely weighted by the number of documents preferred to it; therefore, ‘mis-ranking
up’ a lower-relevance document by a few positions is less costly than ‘mis-ranking up’
a higher-relevance document. By minimizing the largest such ‘mis-ranking up’ cost
over all documents, the resulting algorithm should therefore discourage mis-ranking
of higher-relevance documents, resulting in good accuracy at the top of the returned
ranking. Indeed, the above loss is reminiscent of the /,,-norm based loss studied in [25],
where a greater value of p corresponds to a greater push toward more accurate ranking
performance at the top of the returned list; the above loss can be viewed as an [
extreme, using the relevance-weighted hinge loss instead of the (binary) exponential
loss used in [25]. Introducing slack variables as before, the corresponding minimization
problem can be written as

iy [|w2+ Ze]

=1
subjectto
‘\Pkl > &y Vi k
"l jePy,
lk ZO VZ,],k

> — k) —we (@ — L) Vi gk

Introducing Lagrange multipliers and taking the Lagrangian dual then results in the
following convex optimization problem (after an appropriate scaling of variables):

m

Q k! i y)
i XY % Jk”’prkjﬁffkl DIPIEEL

zl(gkeRz’—l(g Jk')ER =1 (j,k)ER;
subject to
0<al, < Vi, k
. C
S =g v
m
k:|Pi|>0

The constraints in this case can be interpreted as a set of constraints on the /; o.-norm of
o' for each 7, together with non-negativity constraints. Quattoni et al. [21] recently de-
veloped an efficient algorithm for /; ..-norm projections; this allows us to use a stochas-
tic gradient projection method similar to that discussed for the average pair-wise loss
in Section 3.1. In this case, each projection step consists of a projection onto the I1
constraints using the method of [21], followed by a projection onto the non-negativity
constraints (which simply involves setting negative values of a§- & to zero). The number
of iterations to reach an e-optimal solution (in expectation) is O(m?/€?) as before; each
iteration now takes O(|R;| log | R;|) time owing to the projection, thus leading to a total
of O(m?n?logn/e?) time if n; = n and |R;| = O(n?) for all i.



4 Experiments

In preliminary experiments, we evaluated our algorithms on the OHSUMED data set, a
benchmark data set for IR ranking algorithms available publicly as part of the LETOR
distribution' [26] (we used LETOR 3.0). The data set consists of 106 medical queries.
Each query is associated with a number of documents, each of which has been judged by
human experts as being either definitely relevant to the query (label 2), partially relevant
(label 1), or not relevant (label 0); there are a total of 16,140 such query-document pairs
with relevance judgments (an average of roughly 152 judged documents per query).
Each query-document pair is represented as a vector of 45 features.

There are five folds provided in the data set; each fold consists of a split of the
queries into roughly 60% for training, 20% for validation, and 20% for testing. We
evaluated our algorithms on these five folds and compared their performance with sev-
eral other ranking algorithms for which results are available as baselines in the LETOR
distribution. The following performance measures were used to evaluate the algorithms:

1. NDCG@k: The NDCG@F of a ranking function f on a query ¢ with n documents d1, . . . , dp,
associated with relevance labels y1, . . . , yn, is the NDCG (which is simply NDCG@n) [27]
truncated to the top k documents returned by f:

1 s 2% — 1

NDCGQ@k[f] = — ) —————
CGQk[f] Z 4= discount(j)

where o(j) denotes the index of the document ranked at the jth position by f; discount(5)
is a discounting factor that discounts the contribution of documents ranked lower in the list;
and Zj, is a constant that ensures the maximum NDCG@Fk over all rankings is 1. In the
LETOR evaluation tool, discount(j) is defined to be 1 if j = 1, and log,(j) otherwise.

2. Prec@k: For binary labels, where a label of 1 is considered as relevant and O as irrelevant,
the Prec@k of a ranking function f on a query ¢ as above is the proportion of relevant
documents in the top k£ documents returned by f:

k
1
PrecQk[f] = Z Z Yoy = 1)

where 1(+) is an indicator function whose value is 1 if its argument is true and 0 otherwise.
For the OHSUMED data, relevance labels of 1 and 2 are considered relevant, and O irrelevant.

3. MAP: The average precision (AP) of a ranking function f on a query ¢ as above is the
average Prec@Fk over all positions k occupied by relevant documents:

Y opoq Prec@k[f] - 1y, = 1)
22:1 1(%(1) =1)

The mean average precision (MAP) refers to the mean AP across a set of queries.

AP[f] =

The results are shown in Figure 1; here the algorithms of Sections 3.1, 3.2, and 3.3
are referred to as RankMM-1, RankMM-2, and RankMM-3, respectively. For compar-
ison, we also show results for the following algorithms (all obtained from the LETOR

! Available from http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Fig. 1. Results on the OHSUMED data set in terms of (top left) NDCG@k; (top right) Prec@k;
and (bottom) MAP. See text for details.

website): regression, RankSVM [2, 19], RankBoost [20], ListNet [14], two versions
of AdaRank [7], and SVMMAP [8]. All results shown are averages across the five
folds. For each fold, the regularization parameter C, learning rate 7y, and number of
iterations 7" in our algorithms were selected from the ranges {0.1,1, 10,100, 1000},
{1072,1073,107*,1075,105}, and {100, 250, 500, 750, 1000}, respectively; in par-
ticular, for consistency with the other results reported in LETOR, the parameters that
gave the highest MAP on the validation set were used in each case for training.

Of the algorithms shown for comparison, regression is a point-wise algorithm that
predicts labels of individual documents; RankSVM and RankBoost are pair-wise rank-
ing algorithms; and the remainder are list-wise ranking algorithms, with the last three
directly optimizing the MAP or NDCG. Other than RankBoost, which uses thresholded
features as weak rankers, all algorithms learn a linear ranking function. As can be seen,
the performance of our algorithms, particularly RankMM-1 and RankMM-3, is con-
siderably superior to the standard pair-wise (and point-wise) ranking algorithms?, and
indeed, in many cases, is comparable to the performance of the best algorithms that di-
rectly optimize the MAP or NDCG. We note that RankMM-2 appears not to be as suited
to IR performance measures; RankMM-3 appears to be particularly suited to MAP. The
best overall performance (for this data set) is obtained using RankMM-1.

2 It was recently found that RankSVM, with proper training, yields better results than those
reported in LETOR [28]. Our algorithms show improvement over these new results as well.



5 Conclusion and Open Questions

We have proposed a family of ranking algorithms for IR that employ loss functions
derived from a pair-wise ranking loss, yet show performance comparable to a number
of algorithms that have been proposed recently for optimizing IR ranking measures
such as the MAP and NDCG. Our two best performing algorithms are both stochastic
gradient projection algorithms, one of which requires /; ,-norm projections, for which
we use a method of [21]; the third is a stochastic exponentiated gradient (EG) algorithm.

There are several open questions regarding ranking algorithms in IR. The relation-
ships between different ranking methods and performance measures are still not clearly
understood; for example, it would be of interest to study statistical convergence proper-
ties of these algorithms, as has been done for example in [11]. Another practical issue,
given the scale of many IR applications, is efficiency. We have obtained an O(1/¢?)
rate of convergence to an e-optimal solution for our stochastic gradient projection algo-
rithms, and an O(1/e) rate for the EG algorithm. We expect it may be possible to obtain
an O(1/e) rate for the projection algorithms as well; we leave this to future work.

Finally, a larger scale comparison of different ranking algorithms is required to bet-
ter understand their respective merits and shortcomings. Unfortunately obtaining ap-
propriate data sets for this purpose that include more than two relevance levels has been
a challenge due to their mostly proprietary nature. We hope to evaluate these algorithms
on larger scale web search data in the near future.
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