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Abstract

We explore the applicability of EM-based
algorithms for semi-supervised learning to
problems in audio classification. Each au-
dio class is modeled with a Gaussian mixture
model, the parameters of which are them-
selves estimated through EM; this leads to
a two-stage algorithm that makes use of EM
at both stages. We find that adding unla-
beled data through such algorithms to small
amounts of labeled data can reduce audio
classification error rates by more than half.

1. Introduction

With the ever-growing volume of multimedia content
available through digital libraries, electronic databases
and the World Wide Web, automatic methods for or-
ganizing multimedia data are becoming increasingly
important. Since organizing such data often involves
classifying multimedia documents into different cat-
egories as a key step, methods for automatic classi-
fication of audio files, images, video clips etc. are
currently of tremendous interest. Machine learning
techniques have played an important role in develop-
ing such methods, whereby a classifier is automatically
trained from a set of sample training data. However,
current methods are limited by the need to generate
large sets of good quality labeled training data for each
new classification problem; for example, in the field of
speech research, the Linguistic Data Consortium gen-
erates every year hundreds of hours of carefully tran-
scribed audio databases.

In this paper, we explore the possibility of making use
of unlabeled data to train multimedia classifiers in a
semi-supervised setting. As in many other domains,

obtaining large amounts of multimedia data without
labels is often easy: audio data can be readily collected
from broadcasts, face images can be obtained from on-
line cameras, and so on. Methods for exploiting such
unlabeled data can therefore lead to large savings in
both the time and cost required for training classifiers.

In the last few years, a number of algorithms have
been developed to combine labeled and unlabeled data
for training classifiers in a semi-supervised setting.
Blum & Mitchell (1998) introduced the co-training al-
gorithm, which relies on partitioning the feature space
into two independent but redundant feature sets. Two
classifiers are then trained, one on each feature set,
using the labeled data, and each is used to incremen-
tally label remaining examples for the other. Nigam &
Ghani (2000) present a detailed discussion on the ap-
plicability of co-training, together with comparisons
with various other algorithms on text classification
problems. Ghani (2001) combines co-training with
error-correcting output codes, showing promising re-
sults for semi-supervised learning in multi-class prob-
lems. Another interesting approach that has been pro-
posed involves using kernel expansions across labeled
as well as unlabeled examples (Szummer & Jaakkola,
2001). Recently, ensemble methods such as boosting
have also been modified to take advantage of unlabeled
data (Bennett et al., 2002).

Here we explore the applicability of semi-supervised
learning methods that are based on the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977)
to problems in audio classification. The use of EM for
semi-supervised learning has been proposed in (Miller
& Uyar, 1997). More recently, Nigam et al (2000) have
studied its application to text classification problems,
in which each text class is modeled with a multino-
mial distribution, corresponding to a naive Bayes clas-
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sifier. They also consider an extension in which each
class is modeled with a mixture of multinomials. In
our work, each audio class is modeled with a Gaussian
mixture model (GMM). The parameters of each GMM
are themselves estimated through EM, giving rise to
a two-stage algorithm that makes use of EM at both
stages. We apply the algorithm using different variants
of EM to both binary and multi-class audio classifica-
tion problems; for both types of problems, we find that
using unlabeled data to augment small amounts of la-
beled data can reduce audio classification error rates
by more than half.

The learning methods we use are discussed in Sec-
tion 2. Section 3 describes the audio data sets used in
our experiments and presents our experimental results.
We discuss our results and possible future directions
in Section 4, with concluding remarks in Section 5.

2. Learning Methods

We first describe the use of GMMs for supervised
learning in audio classification in Section 2.1, and
then discuss their extension to semi-supervised learn-
ing through different variants of the EM algorithm in
Section 2.2.

2.1. Audio Classification with GMMs

GMMs are popular as a generative model in many do-
mains involving continuous data due to their flexibility
and analytical tractability. Here we briefly describe
their application to audio classification.

In a supervised audio classification problem, we are
given a finite set of labeled training examples:

Sl = {(X1, y1), . . . , (XL, yL)},

where Xi are audio files and yi are corresponding labels
in some set of class labels Y = {c1, c2, . . . , cM}. Each
audio file X is represented as a sequence of feature
vectors in some Euclidean space Rd:

X = < x1,x2, . . . ,xNX
>, xn ∈ Rd.

Note that the number of feature vectors, NX , can
be different for different audio files X. Each exam-
ple (Xi, yi) in the training set Sl is assumed to be
drawn independently from some fixed (but unknown)
underlying distribution. Using the training set, we are
required to predict, for a new audio file X, the class j
with highest posterior probability, P (cj |X), under this
distribution (under the assumption that new examples
are drawn from the same distribution).

Generative classifiers generally perform this predic-
tion by modeling the class-conditional distributions

p(X|cj), and then using Bayes’ rule to compute the
posteriors:

P (cj |X) =
p(X|cj)P (cj)

p(X)

=
p(X|cj)P (cj)∑M

j′=1 p(X|cj′)P (cj′)
. (1)

The class priors P (cj) are either taken to be uniform,
or estimated by counting the number of times each
label appears in the training data.

In using GMMs for audio classification, each of the
class-conditional densities of feature vectors x ∈ Rd is
modeled as a mixture of Gaussians:

p(x|cj) =
Kj∑
k=1

λjk p(x;µjk,Σjk), (2)

where Kj is the number of mixture components in
the model for class j, λjk are mixing weights, and
p(x;µjk,Σjk) is a multivariate Gaussian distribution
with mean µjk and covariance matrix Σjk. In this
paper, we use the same (fixed) number of Gaussian
components to model each class, i.e. Kj = K ∀j, and
assume diagonal covariance matrices. A common (al-
beit incorrect) assumption that is made is that the
feature vectors in the sequence representing an audio
file are independent. The probability of a complete file
X = < x1,x2, . . . ,xNX

> being generated from class
j is then given by

p(X|cj) =
NX∏
n=1

p(xn|cj)

=
NX∏
n=1

(
K∑

k=1

λjk p(xn;µjk,Σjk)

)
. (3)

As described above, this can be used with Bayes’ rule
(Eq. 1) to compute the posterior probabilities P (cj |X),
in order to arrive at the maximum a posteriori classi-
fication for X:

j∗ = arg max
j

P (cj |X). (4)

The parameters θj = {λjk,µjk,Σjk} of the GMMs
are estimated from the training data using the EM al-
gorithm. The EM algorithm is used for maximum like-
lihood estimation in the presence of hidden or unob-
served variables. The algorithm starts with an initial
guess for the model parameters to be estimated, and
then iterates over two steps: the expectation step (E-
step) in which expected values of the hidden variables
are computed assuming the current model parame-
ter estimates, and the maximization step (M-step) in
which maximum likelihood parameters are estimated



using the expected values of the hidden variables com-
puted in the E-step. On convergence, the algorithm
produces both (local) maximum likelihood estimates
of the model parameters and expected values of the
hidden variables. The application of EM to learning
the parameters of a GMM is detailed in several texts,
e.g. (Mitchell, 1997). Briefly, given a set of data points
drawn from a GMM whose parameters are to be es-
timated, information about which component of the
GMM generated each data point is missing. This infor-
mation is encoded in the form of hidden variables, and
EM is then used to find GMM parameters that max-
imize the likelihood of generating the observed data,
together with expected values for the hidden variables.
In our case, the GMM parameters θj for each class j
are estimated using the audio files in Sl that belong
to class j.

2.2. Incorporating Unlabeled Data with EM

In many practical applications, the number L of la-
beled training examples is insufficient to obtain accu-
rate parameter estimates. We discuss how EM-based
procedures can be used to take advantage of unlabeled
data to improve parameter estimates in such cases.

The scenario we consider now is when the labeled
training set Sl can be augmented with a set of unla-
beled examples Su, so that the complete set of training
data, S = Sl ∪ Su, is given by

S = {(X1, y1), . . . , (XL, yL), XL+1, . . . , XL+U}.

In this case, the unknown labels yL+1, . . . , yL+U corre-
sponding to the unlabeled audio files XL+1, . . . , XL+U

constitute missing information. This missing informa-
tion can be encoded in the form of hidden variables; for
each unlabeled example Xi, we can define M hidden
variables zij , j = 1, . . . ,M , such that

zij =
{

1 if yi = cj

0 otherwise . (5)

The EM algorithm can then be used to find GMM pa-
rameters θ = {θj} that maximize the combined likeli-
hood of the labeled and unlabeled data in the presence
of these hidden variables, z = {zij}. Applying EM in
its basic form consists of starting with an initial param-

eter estimate θ̂
(0)

(which can be obtained by training
the GMMs using the labeled data only, as described
in the preceding section), and then iterating over the
following two steps:

• [E-step] Set ẑ(t+1) = E[z|S; θ̂
(t)

].

• [M-step] Set θ̂
(t+1)

= arg maxθ P (S, ẑ(t+1)|θ).

• Set t = 0.

• [Initial M-step] Initialize θ̂
(0)

= arg maxθ P (Sl|θ).
• Repeat till convergence:

• [E-step] Set ẑ(t+1) = E[z|S; θ̂
(t)

].
• For i = L + 1, . . . , L + U do:
• Set j∗ = arg maxj ẑ

(t+1)
ij .

• Set ẑ
hard(t+1)
ij =

{
1 if j = j∗

0 otherwise , j = 1, . . . ,M.

• [M-step] Set θ̂
(t+1)

= arg maxθ P (S, ẑhard(t+1)|θ).
• Set t = t+1.

• Output θ̂
(t)

.

Table 1. Iterative EM-based algorithm (Section 2.2.1) for
estimating maximum likelihood values for parameters θ
given training data S = Sl ∪Su, where Sl contains labeled
examples and Su contains unlabeled examples (see text).

As discussed in (Nigam et al., 2000), since
E[zij |S;θ] = P (yi = cj |S;θ) = P (cj |Xi;θj), the E-
step effectively assigns probabilistic labels to the un-
labeled examples, according to their posterior proba-
bilites (which can be computed using Eqs. 1 and 3).
Consequently, if the expected values of zij are used as
such, the M-step requires computing maximum like-
lihood parameters with “fractional” examples in each
class. Instead, we use the expected values of zij (i.e.
posteriors) to estimate a “hard” labeling for the unla-
beled examples at each step. Different strategies for
assigning these hard labels give rise to two different
algorithms for estimating the parameters; the first is
iterative in nature, the second incremental.

2.2.1. Iterative EM-Based Algorithm

One method for assigning hard labels to the unlabeled
examples is to find, for each unlabeled example Xi, the
variable zij with the highest expected value, and assign
Xi to the corresponding class j. This leads to the algo-
rithm outlined in Table 1. The algorithm constitutes
an iterative procedure: at each iteration, the E-step
re-labels every unlabeled example with the maximum
a posteriori class predicted by the current model pa-
rameters, and the M-step then re-estimates the model
parameters assuming the current labeling of the data.
Each M-step in the algorithm involves an inner use of
EM to estimate maximum likelihood GMM parame-
ters, as described in Section 2.1.

2.2.2. Incremental EM-Based Algorithm

The iterative algorithm above assigns hard labels to all
the unlabeled examples at each iteration, irrespective



• Set t = 0.

• [Initial M-step] Initialize θ̂
(0)

= arg maxθ P (Sl|θ).
• While Su 6= ∅ do:

• [E-step] Set ẑ(t+1) = E[z|S; θ̂
(t)

].
• For j = 1, . . . ,M do:
• Set Su

j = {Xi ∈ Su : ẑ
(t+1)
ij > ẑ

(t+1)
ij′ ∀ j′ 6= j}.

• Set i∗ = arg max{i:Xi∈Su
j } ẑ

(t+1)
ij .

• Set Sl = Sl ∪ {(Xi∗ , cj)}.
• Set Su = Su \ {Xi∗}.

• [M-step] Set θ̂
(t+1)

= arg maxθ P (Sl|θ).
• Set t = t+1.

• Output θ̂
(t)

.

Table 2. Incremental EM-based algorithm (Section 2.2.2)
for estimating maximum likelihood values for parameters θ
given training data S = Sl ∪Su, where Sl contains labeled
examples and Su contains unlabeled examples (see text).

of the confidence in the assignments. An alternative
approach is to assign hard labels only to the examples
for which the maximum a posteriori classification ac-
cording to the current model can be made with high
confidence (i.e. the predicted class has high posterior
probability). This leads to the algorithm outlined in
Table 2. The algorithm proceeds in an incremental
fashion, adding the most confidently classified exam-
ple in each class to the labeled set on each iteration. In
practice, due to time considerations we allow the algo-
rithm to label on each iteration the n most confidently
classified examples in each class, for some appropriate
number n. Again, each M-step involves an inner use
of EM for GMM parameter estimation.

The incremental algorithm above is equivalent to the
self-training algorithm of (Nigam & Ghani, 2000).

3. Experiments

We conducted experiments with the above algorithms
on two different audio classification tasks: gender iden-
tification and speaker identification. The first is a bi-
nary classification problem involving two classes, while
the second task is a more complex problem involving
a large number of classes (in our case, the task was to
distinguish between 50 different speakers).

3.1. Data Sets

We used a spoken audio database distributed by the
Linguistic Data Consortium1. In particular, we used

1http://www.ldc.upenn.edu/

the HUB4 1996 and 1997 data sets. The audio is from
broadcast sources, sampled at 16kHz.

For the gender identification task, we had a total of
17,000 audio files, corresponding to a total of about
30 hours of spoken audio. To construct training and
test sets, we randomized the order of audio files in the
data set, and then split the data into a small set of
2,000 labeled files for use in training initial models, an
unlabeled training set of 10,000 files, and a test set of
5,000 files.

For the speaker identification task, we had a total of
13,217 audio files, corresponding to a total of about
25 hours of spoken audio. As for the gender identi-
tifcation task, we randomized the order of audio files
in the data set, and then split the data into a small set
of labeled data for training initial models, a large set
of unlabeled training data, and a set of test data. In
this case we had a labeled training set of 2,000 audio
files, an unlabeled training set of 8,000 files, and a test
set of 3,217 files.

3.2. Feature Extraction

To extract features from the audio files, we used
a standard Mel-cepstrum representation popular in
the speech recognition community (Rabiner & Juang,
1993). Each audio file is broken up into overlapping
frames of 25.6 milliseconds each with a frame rate of
100 frames per second. A Hamming window is applied
to each frame, and then 256 power spectrum coeffi-
cients are computed. The spectrum is then warped
according to the Mel scale, its logarithm computed,
and a final discrete cosine transform applied, resulting
in 13 Mel-cepstrum coefficients. The first and second
time derivatives (known as the delta and delta-delta
features) are computed and appended to the feature
vector, resulting in a 39-dimensional vector extracted
every 10 milliseconds. (Thus according to the notation
of Section 2, d = 39 in our experiments.)

3.3. Experimental Results

The experiments consisted of training initial mod-
els using different amounts of labeled data, and then
studying the effect of adding increasing amounts of
unlabeled data with the two algorithms described in
Section 2.2. The following sections discuss the results
on each task.

3.3.1. Results on Gender Identification

Figures 1 and 2 show the results of using the iterative
and incremental EM-based algorithms on the gender
identification task. For all experiments reported on



Figure 1. Results of combining labeled and unlabeled data
using the iterative EM-based algorithm of Section 2.2.1 on
the gender identification task. The error rates shown were
measured on a test set of 5,000 files.

this task, each class was modeled with a mixture of
32 Gaussians, each with a diagonal covariance matrix.
The results shown for iterative EM correspond to a
single iteration of the algorithm. For the incremental
EM experiments, upto 50 unlabeled files per class (i.e.
a total of 100 files) were added to the labeled set on
each iteration. The incremental EM algorithm was run
to completion, i.e. until all unlabeled files were added
to the labeled set.

As seen in the figures, both algorithms are capable of
improving classification accuracy with unlabeled data,
although the iterative algorithm appears to give more
consistent results. When labeled data is plenty and
the initial parameter estimates are therefore already
accurate, adding unlabeled data with either algorithm
tends to degrade performance (refer to the plots for
1,000 and 2,000 labeled files). This is in tandem with
previous observations, e.g. (Nigam et al., 2000). How-
ever, when only a small amount of labeled data is avail-
able, and the initial parameter estimates are therefore
relatively poor, unlabeled data is seen to give a signif-
icant improvement in performance. The iterative al-
gorithm is especially effective, and can deal well even
with initial models trained with very few labeled exam-
ples, a case on which the incremental algorithm seems
to fail (refer to the plots for 50 labeled examples; even
with this small labeled set, the iterative EM-based al-
gorithm reduces the error rate by more than half, from
11.7% to 5.04%, with the addition of just 1,000 unla-
beled examples - and further to 4.78% with the addi-
tion of 10,000 unlabeled examples).

Figure 2. Results of combining labeled and unlabeled data
using the incremental EM-based algorithm of Section 2.2.2
on the gender identification task. The error rates shown
were measured on a test set of 5,000 files.

It is interesting to note that adding just a small
amount of unlabeled data seems to give almost all of
the advantage that is gained from adding larger num-
bers of unlabeled examples. One possible explanation
for this is that adding increasing amounts of unlabeled
data leads to parameter estimates that depend very
little on the labeled data for which reliable class infor-
mation is actually known, and therefore may not be
optimal in terms of improving classification accuracy.
De-weighting the contribution of the unlabeled exam-
ples may be one way to overcome this phenomenon;
this is to be investigated in future work.

3.3.2. Results on Speaker Identification

Figures 3 and 4 show the results of using the two algo-
rithms on the 50-class speaker identification task. The
results for all experiments reported on this task are
with mixtures of 64 Gaussians per class, each with a
diagonal covariance matrix. As in the gender identifi-
cation experiments, the results shown for iterative EM
correspond to a single iteration of the algorithm. For
the incremental EM experiments, up to 2 unlabeled
files per class (i.e. a total of 100 files) were added to
the labeled set on each iteration. As before, incremen-
tal EM was run to completion, i.e. until all unlabeled
files were added to the labeled set.

As in the gender identification case, both EM-based al-
gorithms are able to take advantage of unlabeled data
to improve performance, although again the iterative
algorithm is especially effective. Even with only 100



Figure 3. Results of combining labeled and unlabeled data
using the iterative EM-based algorithm of Section 2.2.1 on
the speaker identification task. The error rates shown were
measured on a test set of 3,217 files.

labeled files (i.e. only 2 labeled files per class), the iter-
ative algorithm reduces the error rate from 35.31% to
21.88% with the addition of just 1,000 unlabeled files,
and further to 17.81% with the addition of 8,000 unla-
beled files. In this case the error rate is reduced even
when the initial training set has a larger number of la-
beled examples (refer to the plots for 1,000 and 2,000
unlabeled files). This is because for this problem, even
2,000 labeled files mean only 40 files per class, and the
initial parameter estimates are therefore not as good
as in the binary gender identification problem.

Again, we observe a steep improvement in performance
with the addition of a small amount of unlabeled data,
but relatively little further improvement on adding
larger numbers of unlabeled examples. This requires
further investigation.

4. Discussion

It is clear from our experiments that unlabeled data, in
conjunction with EM-like algorithms, has the potential
to improve audio classification accuracy when labeled
audio data is limited in quantity. The experiments also
suggest that an iterative EM-based algorithm is better
suited to this task than an incremental one, although
more extensive experimentation with parameters such
as the number of iterations and size of increment would
be required to confirm this.

The results of our experiments lead naturally to a num-
ber of interesting questions. From a practical view-

Figure 4. Results of combining labeled and unlabeled data
using the incremental EM-based algorithm of Section 2.2.2
on the speaker identification task. The error rates shown
were measured on a test set of 3,217 files.

point, an important open question is how to deter-
mine the extent to which unlabeled data will help for
a given set of labeled training data; as we have seen in
our experiments, this can vary significantly with the
sizes of the training sets involved. It would be useful
to develop a theoretical understanding of this issue;
for example, it may be possible to develop PAC-type
bounds for semi-supervised learning that quantify the
expected gain or loss in accuracy for given sizes of la-
beled and unlabeled training sets.

It is also important to understand why the benefit
gained from unlabeled data seems to wither out as
more unlabeled data is added. One possible reason for
this lies in the formulation of the objective function
that is maximized; in the EM-based methods used in
this paper, we seek to maximize the combined likeli-
hood of the labeled data and the unlabeled data. Con-
sequently, as more and more unlabeled files are added,
the contribution of the labeled data becomes insignif-
icant over time and the algorithms do not offer any
guarantees in terms of reducing the error rate; in ef-
fect, the algorithms can end up finding a set of GMM
parameters that maximize the likelihood of the data
with no reliable label information present. Using an
objective function that directly aims to minimize some
measure of the error rate may therefore prove to be
more effective. Techniques such as kernel expansions
(Szummer & Jaakkola, 2001) that use as an objective
function the likelihood of only the labeled data, given
some distance measure across labeled and unlabeled
data, are also worth exploring.



It may also be possible to make use of ideas that have
been developed in the speech understanding commu-
nity. For example, adaptation techniques such as max-
imum likelihood linear regression (Leggetter & Wood-
land, 1995), which constrain the manner in which
model parameters can evolve and therefore limit the
deviation from initial parameter estimates, can prove
to be useful in the context of semi-supervised learning.

5. Conclusion

In this paper we have studied the use of different vari-
ants of the EM algorithm for semi-supervised learn-
ing in audio classification. We applied the algorithms
to both binary and multi-class classification problems;
our experiments suggest that for both types of prob-
lems, audio classification error rates can be reduced
by half using unlabeled data. These results are quite
promising, especially given the high cost of human an-
notations involved in producing labeled training data.

We have only scratched the surface of what promises
to be an important direction in audio and other multi-
media organization tasks. As discussed in the previous
section, there are several possible avenues for further
improvement and investigation. Many modeling issues
also remain to be explored; for example, as more data
is labeled the structure of the GMMs can potentially
be re-adjusted, adding more component Gaussians to
the mixtures. Nevertheless, our initial experiments in-
dicate that semi-supervised learning can be profitably
applied to audio data. Furthermore, it is likely that
our results with GMMs can be extended to other mul-
timedia domains, such as images and video, that also
involve primarily continuous-valued attributes.
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