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Abstract

This paper presents a framework for fusing together
global and local information in images to form a powerful
object detection system. We begin by describing two detec-
tion algorithms. The first algorithm uses independent com-
ponent analysis (ICA) to derive an image representation
that captures global information in the input data. The sec-
ond algorithm uses a part-based representation that relies
on local properties of the data. The strengths of the two de-
tection algorithms are then combined to form a more pow-
erful detector. The approach is evaluated on a database of
real-world images containing side views of cars. The com-
bined detector gives distinctly superior performance than
each of the individual detectors, achieving a high detection
accuracy of 94% on this difficult test set.

1 Introduction
Object detection in images is an important problem that

has recently gained a lot of attention in the vision commu-
nity. The main challenge in object detection arises from the
wide range of variations across different imaging conditions
and across different objects in the object category of inter-
est. To be successful, any approach to the problem must be
able to generalize over these variations.

Most approaches that have been proposed for the prob-
lem rely on some underlying feature representation to facil-
itate this generalization. The feature representation can be
either the raw pixel-based representation, or a higher level
representation obtained by applying some transformation to
the raw image data. Different representations capture dif-
ferent kinds of information in the data. In particular, some
representations capture global information in images, while
others capture local properties. Although both approaches
work well to a certain extent, each is limited by the fact that
it ignores other information that may also be important.

In this paper, we present an approach that allows both
global and local information to be fused together. In par-
ticular, we describe two detection algorithms, one that uses
global information in images and another that relies on local
information, and show how these two kinds of information
can be merged together to form a more powerful detection
system. As a test bed for our approach, we choose a diffi-
cult test set of real-world images that contain side views of

cars against varied natural backgrounds. Our experiments
on this test set show that combining information from the
two detectors outperforms each of them individually.

We present our first detection algorithm, which captures
global properties of the data using independent component
analysis (ICA), in Section 2. Section 3 describes the sec-
ond detection algorithm, which uses a part-based represen-
tation to capture local properties of the data. In Section 4 we
present our approach for fusing the two kinds of informa-
tion. Section 5 presents our experimental results, followed
by conclusions in Section 6.

2 ICA-Based Approach: Global Information
In this approach, we use ICA to extract a set of in-

dependent components from some sample object images.
These independent components are used as a basis to form
a representation for images. Boosting is then used to learn
an object/non-object classifier based on this representation,
and the learned classifier is used to develop a detector for
the object class.

2.1 Representation using ICA

ICA can be viewed as an extension of Principal Com-
ponent Analysis (PCA). PCA relies only on the second or-
der properties of the data, thus ignoring much of the infor-
mation that may be contained in higher order relationships
among the image pixels. ICA separates higher order mo-
ments of the input in addition to second order moments.

The idea behind using ICA is to find a set of statisti-
cally independent “source” images for a set of object im-
ages. This is done using the following model:�����
	

(1)

where
�

represents the observed images,
	

the (unknown)
independent sources, and

�
the (unknown) mixing matrix.

The procedure described in [2] is used to find the unmixing
matrix � . This is then used to obtain the unmixed sources�

, which are an estimate of the original sources
	

under
some permutation (details are omitted due to lack of space):�
� � �

(2)
In our experiments, we applied this technique to 200 car
images, where each image is of size ����������� . Some of the
independent components obtained are shown in Figure 1.
These form a set of independent basis images, and can be
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Figure 1. Left: Examples of the independent compo-
nents obtained using the ICA approach; this representation
captures global information. Right: Examples of the parts
obtained using the part-based approach; this representation
captures local information.

viewed as providing a set of statistically independent image
features. Each image is represented in terms of this basis as
a feature vector containing the normalized dot products of
the image with each of the independent components. Since
this representation requires operating on the entire image, it
can be viewed as capturing global information in the image.

2.2 Classification using Boosting
Boosting is a technique for combining weak learners to

form a strong classifier. It has been used successfully in var-
ious problems in vision, including image retrieval [6], face
detection [7] and image segmentation [5]. In all these ap-
proaches, an image is represented as a set of some features.
Each feature (with an associated threshold) is then treated as
a base classifier, and boosting is performed to learn a strong
classifier as an ensemble of these base classifiers.

In our method, each ����������� training image (and later
each ����������� window in the test images) is represented as
a feature vector obtained from the independent component
basis (as described above). Boosting is then performed over
these features. We use the AdaBoost algorithm described in
[4]. At each iteration, we model each feature as a mixture of
two gaussians, with a gaussian corresponding to each class
(object vs. non-object). Based on the current weight over
the data, the optimal threshold is computed; the feature and
this learned threshold are then used to classify the data. The
feature that gives minimum classification error on the train-
ing set, along with the corresponding threshold, is chosen
is as the base classifier for that particular iteration. A final
classifier ��� is then learned as a combination of these base
classifiers, weighted and thresholded appropriately:�����! �" � sgn

#%$'&)(�* (
sgn �,+ ( �! �".-0/ ( "21�-0/43 (3)

where each + ( denotes a feature of the input  , / ( the corre-
sponding learned threshold,

* (
the weight assigned to this

feature by the boosting algorithm, and / the overall thresh-
old. (Again, details are omitted due to lack of space; the
approach is similar to that in [5].) In addition to the binary
classification given by the thresholded combination, the ab-
solute value (without the threshold) can be used to give an
activation or confidence value:5 ���! �" � &6(�* (

sgn �,+ ( �! �"7-8/ ( " (4)

The activation values are used to form a classifier activa-
tion map that allows the learned classifier to be used as an
effective detector; this step is discussed in Section 4.1.

3 Part-Based Approach: Local Information
In this section we describe an object detection algorithm

that uses a part-based representation. Only a brief overview
is given here; a detailed description can be found in [1].

3.1 Representation using Parts
A vocabulary of parts is first constructed automatically

from a set of sample object images. This is done by us-
ing an interest operator to select points in the images based
on local signal behavior; small image patches are then ex-
tracted around these interest points to form the part vocab-
ulary. Some of the parts obtained are shown in Figure 1.

This part vocabulary is then used to represent images.
Given a new image, we determine which of the vocabu-
lary parts are present in it. This is done by finding interest
points in the image to focus attention on the interesting re-
gions, and then comparing local patches around these points
to parts in the vocabulary. Vocabulary parts that are suffi-
ciently similar to such interest patches are considered to be
present in the image. The parts thus detected in the image,
together with spatial relations among them, are used as bi-
nary features to form a representation for the image. Since
this representation requires only local operators, it can be
viewed as capturing local information in the image.

3.2 Classification using SNoW
Based on the above part-based feature representation, a

classifier to classify �9���:�;��� images as object or non-object
is learned using the SNoW learning architecture [3]. SNoW
is a feature-efficient variation of the winnow learning algo-
rithm, and is therefore useful in this case as the potential
number of part and relation features is very large. SNoW
learns a linear threshold function for each class in the clas-
sification task (in this case, object and non-object). Given
an input  , the classifier �=< predicts the class according to
the following function:�><��! �" � sgn

#�$'&)( � *@?( - *BA( "C+ ( �! �"21EDF�2/ ? -8/ A "G3
(5)

where

*
?(
and / ? are the weights and threshold of the func-

tion corresponding to the positive (object) class, and

*�A(
and / A those corresponding to the negative (non-object)
class. (Note: the features + ( here are different from Sec-
tion 2.2; they are binary features indicating the presence or
absence of a vocabulary part, or of a spatial relation between
two such parts.) When applied to an input vector, the linear
threshold function corresponding to the positive class can
be used to give an activation or confidence value:5 <��! �" �IHKJ ( * ?( + ( �! �"7-8/ ? if �><��! �" � D �� if �><��! �" � - � (6)
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Again, these activations are used to form an activation
map for detection; this step is described in Section 4.1.

4 Fusion of Global and Local Information
The detection algorithm described in Section 2 uses pri-

marily global information in images, whereas the algorithm
of Section 3 relies primarily on local information. This sec-
tion presents an approach for fusing together the global in-
formation from the first method and the local information
from the second to form a more powerful detection system.
We make use of the confidence of each scheme which is
then used to make the combined decision. The activations
of each of these methods are treated as their confidence in
the classifier output. We first describe how the activations
produced by each classifier are used to form a classifier ac-
tivation map for detection. We then discuss how the activa-
tion maps produced from the two individual classifiers are
merged together to combine information from both.

4.1 Classifier Activation Map
Given a classifier � that can classify an image as posi-

tive (object) or negative (non-object) based on some activa-
tion value 5 it produces, detection in an image proceeds by
shifting a �������0��� window over the image and applying
the classifier to each such window

*
. The activation values5 � * " produced by the classifier at the various window lo-

cations yield a classifier activation map [1]. This map has
high values at locations where the classifier has high confi-
dence in its positive classification. The algorithm described
in [1] is used to analyze this map for activation peaks, giv-
ing accurate localization of objects and preventing multiple
detections correponding to a single object in the image.

4.2 Fusion of Classifier Activation Maps
Given a test image, the ICA-based classifier �L� produces

an activation map based on its activations 5 � , while the part-
based classifier �=< produces an activation map based on its
activations 5 < .1 Each map captures information based on
the corresponding classifier, which in turn captures infor-
mation based on the representation it uses. Each of these
maps can be used to perform detection as described above.

To combine information from the two detectors, the ac-
tivations 5 � and 5 < from the two classifiers are combined
via a function M to obtain a new activation 5 fused. This al-
lows the two original activation maps to be merged into a
new activation map, in which the activation for any image
window

*
is given by5

fused � * " � M � 5 �N� * "PO 5 <�� * "C" (7)

Different choices for the function M above combine the
two kinds of information in different ways. To find an effec-

1In the implementation, the maps were obtained by shifting a QSRPR.T:UPR
window in steps of 4 pixels in the horizontal direction and 2 pixels in the
vertical direction.

tive combination, we learn M automatically from the train-
ing images. Each training image  is represented by the
2-element vector � 5 �N�! �"PO 5 <��! �"C" . These training vectors,
along with the corresponding positive (object) or negative
(non-object) labels of the images, are then fed as input to a
supervised learning algorithm to learn a function that gives
good classification accuracy on the training set.

In our implementation, M is learned as a function of the
individual activations by a simple perceptron. Experiments
were performed with both linear and quadratic functions.
(Note that a linear learning algorithm can be used to learn a
higher degree polynomial by adding higher order terms and
then learning the coefficients of these terms as a linear func-
tion in the new space.) We found that a quadratic function of
the individual activations gives high classification accuracy
on the training set; this is used in the final implementation.

The new activation map thus obtained contains informa-
tion from both detectors. The same inference algorithm
used on the earlier activation maps can now be applied to
this new map to form a better detection hypothesis. The ap-
proach described here can be used to combine information
from any set of detectors that rely on classifiers which can
give activation values to produce activation maps; by learn-
ing a simple function over these activations, the individual
maps can be merged into a new map that allows better in-
ference for object detection.

5 Experimental Results
We evaluated our approach on the car image database

used in [1]. The database contains 1000 training images
(500 positive and 500 negative), and 170 test images con-
taining 200 cars in all. The images in this database are all
natural; they are taken from different sources and include
images with occlusion and cluttered backgrounds. The eval-
uation scheme used for evaluating detections as correct or
false is the same as that used by [1].

Figure 2 shows the results of the three approaches on
this test set. The performance of our ICA-based approach
is comparable to that of the part-based approach. However,
when the strengths of the two approaches are combined us-
ing our fusion method, the performance of the resulting de-
tector surpasses each of the individual detectors.

For each of the three methods, the point at which that
method gives highest recall (together with highest precision
at that recall) is shown in Table 1. The combined detector
gives distinctly higher accuracy than the individual detec-
tors in terms of both recall and precision. Figure 3 shows
samples of the output of our detector.

6 Conclusions
We argued that both global and local information are im-

portant for the object detection task. We described two de-
tection algorithms - one that uses global information via
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Figure 3. Examples of test images on which our combined detector achieved perfect detection results. Note that the windows are
drawn at the exact locations output by the detector. Multiple detections corresponding to a single object are not allowed.
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Figure 2. Performance of the different methods on the
car image test set containing 200 cars. Recall measures
the number of correct detections relative to the total num-
ber of positives (here, 200) in the database; ( VXW precision)
measures the number of false detections relative to the total
number of detections made by the system. Different points
on the curve are obtained by varying an activation threshold
parameter in the classifier activation map. The combined
detector achieves distinctly superior performance than each
of the two individual detectors. (Important: note that the
X-axis range is [0, 0.5] for clarity.)

an ICA-based representation, and another that uses local
information via a part-based representation - and showed
how a function that combines the two kinds of information
in an effective way can automatically be learned from the
training images. We showed that combining the two kinds
of information gives distinctly superior performance than
the individual detectors. The combined detection algorithm
achieves a high detection accuracy of 94% on a difficult test
set of real-world images of cars.

Our approach shows that a powerful object detection sys-
tem can be built by fusing different kinds of information in
images. Our framework can easily be extended to combine
information from several different detectors. The advantage
of this approach is that it can be used to look at several dif-
ferent aspects of the input data in parallel, and the outputs
of the individual detectors can then be combined in a simple
step to form a highly accurate detection system.

Detection No. of correct Recall No. of false Precision
method detections, Y Z<S[\[ detections, ] ZZ ?7^

ICA-based 184 92.0% 139 56.97%
Part-based 180 90.0% 97 64.98%
Combined 188 94.0% 61 75.50%

Table 1. For each detection method, the point at which
highest recall is achieved (and highest precision at that re-
call) is shown. The combined detector gives higher accu-
racy than the individual detectors in terms of both recall
and precision.
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