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Abstract
We use statistical machine learning to develop
methods for automatically designing mechanisms
in domains without money. Our goal is to find
a mechanism that best approximates a given tar-
get function subject to a design constraint such
as strategy-proofness or stability. The proposed
approach involves identifying a rich parametrized
class of mechanisms that resemble discriminant-
based multiclass classifiers, and relaxing the result-
ing search problem into an SVM-style surrogate
optimization problem. We use this methodology to
design strategy-proof mechanisms for social choice
problems with single-peaked preferences, and sta-
ble mechanisms for two-sided matching problems.
To the best of our knowledge, ours is the first au-
tomated approach for designing stable matching
rules. Experiments on synthetic and real-world data
confirm the usefulness of our methods.

1 Introduction
Mechanism design studies situations where a set of self-
interested agents each hold private information regarding
their preferences over different outcomes. In mechanism de-
sign without money, agents make reports about their pref-
erences, perhaps untruthfully, and the mechanism selects an
outcome based on these reports. Canonical problems include
those of social choice (locating a student center), matching
(students to high schools), and assignment (faculty to offices).

The Gibbard-Satterthwaite theorem [Gibbard, 1973; Sat-
terthwaite, 1975], states that strategy-proofness (truthful re-
porting as a dominant strategy) is unattainable in general do-
mains without money. In this light, a large theoretical litera-
ture provides results, both positive and negative, for particu-
lar domains. Designs are typically justified axiomatically and
without optimizing a quantitative objective.

In comparison, the method of automated mechanism de-
sign (AMD) [Conitzer and Sandholm, 2002] seeks to use
computation to automatically find mechanisms that are tai-
lored to the needs of an application. The typical approach is
to formulate a search problem over a space of mechanisms
and solve using conventional search heuristics [Conitzer and
Sandholm, 2004; Guo and Conitzer, 2010; Sui et al., 2013].

Most prior work assumes that the design objective is pro-
vided in closed-form. But a designer’s requirements may be
more complex than maximizing a simple objective such as
welfare. In this paper, we adopt a more flexible approach
that allows the designer to encode requirements in the form
of a target outcome rule, with this rule described through la-
bels on a set of inputs drawn from an underlying preference
distribution. Consider for example a school choice program
that seeks to change an existing matching mechanism so as
to increase the diversity of students enrolled in each school.
Rather than an explicit objective, we want a designer (perhaps
a school board) to be able to present requirements via desired
choices on past preferences of students and schools.

There are key challenges in solving this problem. Often,
we do not have a complete characterization of the space of
desired mechanisms. Even when a characterization is avail-
able, identifying the mechanism that best approximates a tar-
get rule can be computationally hard. We provide a novel
framework to resolve these issues by using tools from ma-
chine learning. The methodology involves identifying a rich
subset of desired mechanisms that can be parametrized by
continuous weights. The distance of a mechanism in this class
from the target rule is modeled as a loss function. We use
tools from machine learning to relax this distance measure
into a continuous surrogate objective, and solve the result-
ing continuous optimization problem using standard solvers.
Specifically, we choose a class of rules that can be modeled as
discriminant-based multiclass classifiers, and relax the prob-
lem of finding the optimal rule into a support vector machine
(SVM) style surrogate optimization problem.

We apply this new framework to two canonical settings:
(1) social choice with single-peaked preferences, where the
design constraint is strategy-proofness (no agent can usefully
misreport his preferences); and (2) two-sided matching prob-
lems, where the design constraint is stability (no two agents
are better off being matched with each other than to their as-
signed match). In each case, we introduce a new class of out-
come rules that satisfy the desired property and are amenable
to optimization through machine learning techniques.

For the problem of social choice with single-peaked pref-
erences, we introduce a class of parametrized strategy-proof
rules called the weighted generalized median (WGM) rules,
which includes the median and percentile rules considered
in previous AMD works [Procaccia and Tennenholtz, 2009;



Sui et al., 2013]. These rules can be modeled (with some
relaxation) as discriminant-based classifiers, and we frame a
SVM based surrogate optimization problem to find the opti-
mal rule. Experiments on synthetic preference data show that
the proposed approach is quite robust, and performs better
than the best rules from baseline strategy-proof classes.

For the problem of two-sided matching, we introduce a
class of parametrized stable rules called the weighted poly-
tope rules, which includes the classical deferred acceptance
(DA) mechanisms. These rules resemble discriminant-based
structured classifiers, allowing us to frame a structural SVM
problem to optimize over the class. To the best of our knowl-
edge, this is the first automated approach for designing stable
matching rules. Experiments on synthetic preference data and
those motivated by a real-world school choice problem con-
firm that our method performs better than DA rules.

Related work. Procaccia et al. [2009] considered a setting
similar to ours, but focused on showing learnability of partic-
ular classes of voting rules, with no incentive considerations.
In comparison, we provide a general methodology for AMD
without money, and apply it to two settings with specific de-
sign constraints. Another related work by Sui et al. [2013] fo-
cused on designing strategy-proof percentile rules for a multi-
dimensional variant of our social choice setting. We handle a
strictly larger class of strategy-proof (WGM) rules; also, for
specific distance measures, our approach can be applied to
their setting, by decomposing the optimization problem into
a separate problem for each dimension. The use of machine
learning for AMD with money was pioneered by Dütting et
al. [2015], who use SVMs to design payment rules for auc-
tion mechanisms. This is the closest prior work to the present
paper, but differs in that it learns payment rules rather than
outcome rules, and achieves approximate strategy-proofness.
Sample-complexity results are also available for the design of
revenue-optimal auctions [Cole and Roughgarden, 2014].

2 Problem Setup
Let N = {1, . . . , n} = [n] denote a set of agents, and Ω be
a set of outcomes. Each agent has a total preference order on
outcomes (perhaps allowing for ties). We will use y �i y′ to
denote that agent i strictly prefers outcome y ∈ Ω to y′ ∈ Ω,
and y �i y′ to denote that agent i strictly prefers y to y′ or is
indifferent. Let P denote the set of all allowable preference
profiles � = (�i)i∈N of the agents. In MD without money,
each agent makes a report (perhaps untruthfully) about his
preference order, and the mechanism is defined by an out-
come rule f : P→Ω that maps the agent reports �̂ ∈ P to
an outcome f(�̂) ∈ Ω. We assume that the preference profile
is distributed according to an unknown distribution �∼ D.

We are interested in outcome rules that satisfy one or more
design constraints. One such constraint in social choice prob-
lems is strategy-proofness. Another desirable property in
two-sided matching problems is stability.

Given a target outcome rule g : P → Ω that need not sat-
isfy the design constraint, our goal is to find an outcome rule
that closely approximates g, subject to the given constraint.
The closeness to g is measured in terms of a distance function
D : Ω × Ω→R+, where D(y, y′) gives the penalty for out-

putting outcome y′ when the target outcome is y. Since the
set of all rules that satisfy the design constraint is often not
well understood or otherwise hard to work with directly, as a
first step, we identify a sufficiently rich, parametric family of
desired rules F , and re-formulate our goal as minimizing the
expected distance over this class:

min
f∈F

E�∼D
[
D
(
g(�), f(�)

)]
. (1)

We assume access to the distribution D and target rule g
through a sample of agent preferences profiles drawn i.i.d.
from D, along with labels from the target rule: S =

(
(�1

, y1 = g(�1)), . . . , (�L, yL = g(�L))
)
∈ (P × Ω)L. We

then solve an empirical version of the problem in Eq. (1):

min
f∈F

L∑
r=1

D
(
yr, f(�r)

)
.

Overview of approach. Our approach essentially involves
relaxing the above problem into a continuous optimization
problem that can be solved using standard solvers. We begin
by identifying a rich class of rules F that are parametrized
by continuous weights w ∈ RK . In the context of learning,
the distance D of a rule in this class from the target can be
viewed as a loss function, and one can use tools from machine
learning to relax D into a continuous surrogate function. We
use the popular multiclass SVM framework of [Crammer and
Singer, 2002] to construct this relaxation.

In particular, we are interested in rules that can be modeled
(perhaps with some relaxation) as a discriminant based mul-
ticlass classifier, i.e. in terms of a (continuous) discriminant
function Hw : P × Ω→R, with the output for a preference
profile given by the outcome that maximizes this function:
fw(�) = argmaxy∈ΩHw(�, y). This structure of the out-
come rule then allows us to invoke the SVM framework to
construct a surrogate objective for D. Specifically, for pro-
file � and target y, we replace D(y, fw(�)) by a continuous
function: maxy′∈Ω

{
D(y, y′) + Hw(�, y′) − Hw(�, y)

}
.

The parameters obtained by solving the resulting continuous
optimization problem are used to construct a rule in F .

3 Strategy-Proof Social Choice
We consider a setting with m outcomes Ω = {y1, . . . , ym},
and the outcomes are ordered, say as y1 < . . . < ym. We
assume that preference orders are strict and single-peaked.
This means that each agent prefers one outcome the most,
referred to as his peak, and prefers the other outcomes lesser
as they are farther away from his peak.

More formally, let pi ∈ Ω denote agent i’s peak. For all
a, b ∈ Ω such that b < a < pi or pi < a < b, we have
a �i b. This preference structure occurs naturally in the one-
dimensional facility location problem, where the outcomes
are say locations where a fire station can be set up, and each
agent prefers one location the most, preferring the other loca-
tions relative to his/her most-preferred location. For simplic-
ity, we assume that the number of agents n is odd.

Strategy-proofness. A desirable property of an outcome
rule f : P→Ω in this setting is strategy-proofness, where
it is in the best interest of every agent to report their peaks



truthfully, whatever the others reports. More formally, f is
strategy-proof if for all i: f(�) �i f((�′i,�−i)), ∀ �′i,
where (�′i,�−i) is a preference profile where agent i reports
�′i while all other agents retain their previous report in �.

A well-known strategy-proof rule is the median rule which
returns the median of the reported peaks (under the given out-
come ordering) [Black, 1948]. The argument for strategy-
proofness of this rule is easy to see. If an agent’s peak is at
the median, he does not gain by misreporting his peak. If his
peak is to the left of the median, the only way he can change
the output is by reporting an outcome to the right of the me-
dian; but this would result in the rule outputting an outcome
that is farther to the right, and less preferred. A symmetric ar-
gument holds for a peak to the right of the median. In fact, an
outcome rule that outputs any kth-percentile of the reported
peaks, for a fixed k ∈ [n], is strategy-proof [Sui et al., 2013].

3.1 Weighted Generalized Median Rules
We introduce a richer class of strategy-proof rules
parametrized by continuous weights, called the weighted gen-
eralized median (WGM) rules (see Figure 1). We will then
develop a SVM approach to optimize over this class. We be-
gin with a well-known generalization of the median rule:
Definition 1 (Generalized Median (GM) Rule [Moulin,
1980]). For a vector of pseudo-peaks u = (u1, . . . , un−1) ∈
Ωn−1 fixed a priori, a GM rule is defined as:

fGM(�;u) = median(p1, . . . , pn, u1, . . . , un−1),

where pi is the peak corresponding to preference ordering�i.
Example 1. Let n = 3 and m = 5. Consider a GM rule with
pseudo-peaks u = (y4, y5). If the reported agent peaks are
y3, y1, y4 respectively, this rule will output y4; on the other
hand, the median rule will output y3 for the same report.

Since the pseudo-peaks u1, . . . , un−1 are fixed a priori, and
do not change with the reports of the agents, a GM rule is
strategy-proof. In fact, for appropriate choices of pseudo-
peaks, one can recover the median and percentile rules from
the GM rule. E.g. the kth-percentile is obtained by setting
n − k + 1 peaks to y1 and the remaining to ym. Moreover,
the class of all GM rules is precisely the set of outcome rules
that are strategy-proof, onto and anonymous [Moulin, 1980].

For any u ∈ Ωn−1, define a function ranku : P ×Ω → N,
that for a reported profile �∈ P and outcome y ∈ Ω, returns
the number of peaks (both reported and in u) that lie to the left
of y: ranku(�, y) =

∑n
i=1 1(pi ≤ y) +

∑n−1
i=1 1(ui ≤ y).

It can then be verified that the GM rule outputs the smallest
outcome whose rank is greater or equal to n:

fGM(�;u) = min
{
y ∈ Ω

∣∣ ranku(�, y) ≥ n
}
.

Assigning non-negative weights α = (α1, . . . , αn) ∈ Rn+
to each agent and non-negative weights β = (β1, . . . , βm) ∈
Rm+ to each outcome in Ω, we define the weighted rank as
rankα,β(�, y) =

∑n
i=1 αi1(pi ≤ y) +

∑m
i=1 βi1(yi ≤ y).

The following is then a continuous extension to the GM rule:
Definition 2 (Weighted Generalized Median (WGM)
Rule). Let α ∈ Rn+ and β ∈ Rm+ be non-negative weights
on agents and items respectively, and t ∈ R+ be a threshold.

FSP ⊃ FWGM ⊃ FGM ⊃ Fpercentile 3 fmedian

Figure 1: Hierarchy of strategy-proof rules for social choice.

A WGM rule parametrized by w = [α,β, t] outputs for a
given preference profile �, the smallest outcome in Ω whose
weighted rank w.r.t. α and β is greater or equal to t:

fWGM(�;w) = min
{
y ∈ Ω

∣∣ rankα,β(�, y) ≥ t
}
.

When α = 1n, β is a vector in Nm with entries adding up
to n−1, and t = n, the WGM rule reduces to a GM rule with
the pseudo-peaks given by the non-zero entries of β.

Example 2. Let n = 3 and m = 5. Consider a WGM rule
with α = (2, 1, 3), β = (1.5, 0.5, 0, 0, 1.5) and t = 3. For
agent peaks y3, y1, y4, rankα,β(�, y1) = 2.5; rankα,β(�
, y2) = 3; rankα,β(�, y3) = 5; rankα,β(�, y4) = 8;
rankα,β(�, y5) = 9.5; and the output is y2.

Theorem 1. The WGM rules are strategy-proof and contain
the median, percentile and GM rules as special cases.

We defer the proof of strategy-proofness (which is similar
in spirit to that for GM rules) for the full version of this paper.

3.2 Multiclass SVM for Designing WGM Rules
We next devise a multiclass SVM style approach for solving
our original problem in Eq. (1) over WGM rules.

Given a sample S =
(
(�1, y1), . . . , (�L, yL)

)
labeled by

a target rule that need not be strategy-proof, we formulate an
empirical version of Eq. (1) over parameters w ∈ Rn+m+1

+ :

min
w∈Rn+m+1

+

L∑
r=1

D
(
yr, fWGM(�r;w)

)
.

A natural distance measure here is the absolute distance be-
tween the output and target outcomes: Dabs(y, y

′) = |y− y′|.
Since a WGM rule is itself a discontinuous function of param-
eters w, the resulting optimization objective is not continuous
in w, and can be difficult to directly optimize. To address
this issue, we resort to the multiclass SVM framework and
replace Dabs with a continuous surrogate objective. For this,
we adopt a slight variant of the WGM rule that resembles a
discriminant-based classifier (but need not be strategy-proof),
and eventually construct a WGM rule from the parameters
obtained by optimizing a surrogate based on the proxy rule.

Discriminant-based proxy: The proxy rule that we use
outputs for any preference profile �, an outcome whose
weighted rank is closest to threshold t in the least-square
sense (this is slightly different from returning the smallest
outcome in Ω that has weighted rank greater or equal to t):

fproxy(�;w) ∈ argmin
y∈Ω

(
rankα,β(�, y)− t

)2
(2)

This resembles a discriminant-based multiclass classifier
with discriminant function Hw(�, y) = −

(
rankα,β(�, y)−

t
)2

, and where the output is the outcome with the highest
discriminant score: fproxy(�;w) = argmaxy∈ΩHw(�, y).



Surrogate objective: With the proxy rule, we can use the
SVM framework to construct a continuous surrogate for Dabs:

L∑
r=1

max
y′∈Ω

{
Dabs(y

r, y′) + Hw(�r, y′) − Hw(�r, yr)
}
.

The parameters w∗ = [α∗,β∗, t∗] obtained by optimizing
(a possibly regularized form of) the surrogate objective can
then be used to construct a rule from the original WGM class:
f∗WGM(�;w∗) = min

{
y ∈ Ω

∣∣ rankα∗,β∗(�, y) ≥ t∗
}

.
Unlike a standard SVM, where the discriminant function

is linear in the parameters, discriminant Hw is quadratic in
w. As a result, the optimization objective, containing a dif-
ference of two quadratic functions, need not be convex. We
apply a standard gradient-based method (with multiple ran-
dom restarts) to solve the optimization problem.

4 Stable Two-sided Matching
The second setting that we consider is two-sided match-
ing [Manlove, 2013]. There are two types of agents, say
hospitals H and doctors D, with N = H ∪ D. Given pref-
erences from agents in one group over agents on the other
side, the goal is to design a mechanism that returns a match-
ing of hospitals to doctors. We will allow agents to be un-
matched, in which case we will say that an agent is matched
with φ. The outcome space Ω contains matchings of the form
y : H∪D→H∪D∪{φ}. This setting arises in several prac-
tical applications such as school choice programs where stu-
dents need to be matched to schools. For ease of exposition,
we will only consider strict agent preferences and one-to-one
matchings. Later we will explain how the proposed method
extends to weak preferences and many-to-one matchings. It
is w.l.o.g. to assume |H| = |D| = n.

Stability. A desirable property here is that of stability,
which states that a matching is stable if no pair of hospital
and doctor prefer being matched to each other rather than
being matched according to y. Also, no hospital or doctor
prefers being unmatched rather than being matched accord-
ing to y. More formally, y is stable for preference profile � if
@ (h, d) ∈ H×D s.t. d �h y(h) and h �d y(d), and more-
over, @h ∈ H s.t. φ �h y(h), and @ d ∈ D s.t. φ �d y(d).
It is known that a stable matching always exists for a prefer-
ence profile [Gale and Shapley, 1962].

Example 3. Let H = {h1, h2, h3} and D = {d1, d2, d3}.
Consider the following agent preferences:

�h1 : d2 d1 d3 �h2 : d1 d2 d3 �h3 : d2 d3 d1

�d1 : h1 h2 h3 �d2 : h3 h2 h1 �d3 : h1 h3 h2

The matching ((h1, d1), (h2, d3), (h3, d2)) is stable, while the
matching ((h1, d1), (h2, d2), (h3, d3)) is unstable as h3 and
d2 are better off being matched with each other.

We will say an outcome rule f : P→Ω is then stable if it
outputs a stable matching for all preference profiles. Unlike
strategy-proofness, stability is a local property, in that, it can
be checked instance-by-instance.

A stable rule that is widely used is the deferred accep-
tance (DA) rule [Gale and Shapley, 1962]. This rule works

in multiple rounds, with one side of agents making proposals
in each round and the other side holding on to the best pro-
posal received so far. Below, we introduce a richer class of
parametrized stable rules that span an entire spectrum of in-
termediate rules between the doctor- and hospital-proposing
DA rules. The proposed rules resemble discriminant-based
classifiers, and can be optimized using structural SVMs.

4.1 Weighted Polytope (WP) Rules
We begin with a well-known characterization of stable match-
ings as extreme points of a polytope [Roth et al., 1993]. From
this, we construct stable outcome rules by setting up a linear
optimization problem over the matching polytope.

Let us slightly overload notation and represent a match-
ing between hospitals and doctors as a Boolean matrix y ∈
{0, 1}n×n with

∑n
d=1 yhd ≤ 1, ∀h and

∑n
h=1 yhd ≤ 1, ∀d,

where yhd = 1 iff y(h) = d or equivalently y(d) = h.
Also, for a preference profile �∈ P , let A(�) =

{
(h, d) ∈

H ×D : d �h φ and h �d φ
}

denote the set of all pairs of
hospitals and doctors who prefer being matched to each other
rather than being unmatched. Then the set of all stable match-
ings for � are those that satisfy the following constraints:

yhd = 0 ∀ (h, d) /∈ A(�);

yhd +
∑
d′�hd

yhd′ +
∑
h′�dh

yh′d ≥ 1 ∀ (h, d) ∈ A(�).

The first constraint disallows a hospital and doctor from
being matched when one of them is better off remaining un-
matched. The second constraint ensures that for all other
(h, d), either h is matched with d, h is matched to a doc-
tor that it prefers more than d, or d is matched to a hospital
he/she prefers more than h.

Let Ω(�) denote the set of all Boolean matchings that sat-
isfy the above constraints for profile �. Now, suppose we
relax the above constraints and allow for fractional matrices
in [0, 1]n×n, denoting the resulting polytope as Ω̃(�):
Theorem 2. ([Roth et al., 1993]) A matching is stable for �
if and only if it is an extreme point of Ω̃(�).

The above result allows us to construct a stable outcome
rule by framing a linear optimization problem over Ω̃(�).
This will always yield a stable matching.
Definition 3 (Weighted polytope (WP) rule). Define λ :
P→Rn×n that assigns a weight λhd(�) ∈ R to each pair
of hospital and doctor (h, d). A WP rule is then defined as:

fWP(�;λ) ∈ argmax
y∈ Ω̃(�)

n∑
h=1

n∑
d=1

λhd(�)yhd.

For specific choices of λ, the proposed rule reduces to the
DA rules. To see this, define once again a rank function
rank : P ×N→ [n] that for any (h, d), computes the number
of doctors preferred by h less than d or the number of hos-
pitals preferred by d less than h, i.e. rank(�h, d) = |{d′ ∈
D : d �h d′}|, and rank(�d, h) = |{h′ ∈ H : h �d h′}|.
When λhd(�) = rank(�h, d), it is easy to show that the
WP rule computes a matching that is optimal for the hospi-
tals (i.e. where each hospital is matched to its most-preferred



achievable doctor), which is precisely what is output by the
hospital-proposing DA rule [Gale and Shapley, 1962]. When
λhd(�) = rank(�d, h), we get the doctor-proposing rule.
Theorem 3. The WP rules are stable and contain the DA
rules as special cases.

We prescribe for λ the following parametrized form, which
yields an intermediate rule between the hospital-proposing
and doctor-proposing DA rules:

λhd(�;W) = ahd rank(�h, d) + bhd rank(�d, h) + chd,

where a,b, c ∈ Rn×n are parameters and W = [a,b, c].

4.2 Structural SVM for Designing WP Rules
We next use the framework of (structural) SVMs to solve the
original problem in Eq. (1) over WP rules. Given sample S =(
(�1, y1), . . . , (�L, yL)

)
labeled by a target rule that need

not be stable, we solve an empirical version of this problem:

min
W∈R3(n×n)

L∑
r=1

D
(
yr, fWP(�r;W)

)
. (3)

A natural distance measure here is the Hamming distance
between the output and target matchings: DHam(y, y′) =
1
2

[∑n
h=1 1(y(h) 6= y′(h))+

∑n
d=1 1(y(d) 6= y′(d))

]
. Again

since a WP rule is discontinuous in parameters W, the above
objective is not continuous in W. We use the SVM frame-
work to formulate a discriminant-based continuous relaxation
to this problem. We first note from Theorem 2 that a WP
rule essentially solves an optimization problem over the set
of Boolean stable matchings Ω(�). Thus a WP rule can be
seen as a discriminant-based structured classifier, where the
output space is the set of stable matchings and the discrimi-
nant function is HW(�, y) =

∑n
h=1

∑n
d=1 λhd(�)yhd:

fWP(�;W) ∈ argmax
y∈Ω(�)

HW(�, y).

We can now replace the original distance measure DHam in
Eq. (3) with the following continuous surrogate objective:

L∑
r=1

max
y′∈Ω(�r)

{
DHam(yr, y′)+HW(�r, y′)−HW(�r, yr)

}
.

The resulting optimization problem (possibly with an addi-
tional regularization term on W) resembles a structural SVM
problem [Tsochantaridis et al., 2005]. The problem is con-
vex in W, and can be solved efficiently using the standard
cutting-plane solver, provided the above ‘max’ over the set
of stable matchings Ω(�r) can be computed in polynomial
time. For the distance function used DHam, this maximization
problem can be relaxed into an equivalent linear program (by
appealing to Theorem 2) and solved efficiently.

Extensions. The proposed method can also be applied to
weak preference orders. In this case, the result of [Roth
et al., 1993] does not apply, and a linear optimization over
the matching polytope is not guaranteed to yield an integral
matching. Whenever this happens, we break ties arbitrarily,
and compute a WP rule on the resulting strict preferences.
Our method also extends to many-to-one matching problems

using the polytope characterization of [Baı̈ou and Balinski,
2000]. An alternate approach that we take in our experiments
is to solve a relaxed form of the above SVM problem where
the stability constraints are ignored during optimization. We
then use the obtained parameters to construct a stable WP rule
by setting up a suitable integer program.

5 Experimental Results
5.1 Strategy-Proof Social choice
We generate synthetic preference data for a one-dimensional
facility location problem. The goal is to set up a facility
in one of m equally-spaced locations (outcomes) on [0, 1]
based on agent preferences. The agent preferences are single-
peaked and the peaks are drawn uniformly from the space
of locations. For this experiment, we adopt a (non-strategy-
proof) target rule that associates a weight w : [0, 1]→R+

with each location, and outputs the location that has the
smallest weighted squared distance from the reported peaks:
g(�) ∈ argminy∈Ω

∑n
i=1 w(pi)(y − pi)

2 (e.g. this weight
could indicate the ease of setting up a facility at a location).
The weight function that we consider is w(z) = e−λz , where
λ ≥ 0 determines the skewness of the weights (higher values
of λ leads to higher weights on the left side locations).

We generate 1000 examples, split equally into train and test
sets, with the train set used to design a mechanism, and the
test set used to estimate its distance from the target rule. We
compare the WGM rule obtained using the multiclass SVM
style method with three baselines: the GM rule that best ap-
proximates the target labels in the train set, obtained by an
exhaustive search over pseudo-peaks; the best percentile rule
[Sui et al., 2013]; and the best dictatorial rule (a rule that al-
ways outputs the peak reported by an a priori fixed agent).

Figure 2(a) plots the average absolute error of the given
rule on the test set, as a function of weight parameter λ for
5 agents and 25 locations. Our approach is quite robust to
changes in target weights. Moreover, it often performs as
good as the best GM rule, and better than the other methods.
We also report results for 100 agents and 250 locations. Here
we do not include the best GM rule, because an exhaustive
search was intractable. We additionally report the accuracy
of the non-SP rule in Eq. (2) that is used as a proxy for a
WGM rule in the surrogate optimization problem. Clearly,
the proxy rule closely mimics the corresponding WGM rule.

We next adopt a target rule that assigns weights to agents
rather than outcomes, and as before outputs the outcome with
minimum weighted squared distance from the reported peaks.
The weight function we use isw′(s) = e−κs/n, where s ∈ [n]
is a randomly assigned priority to an agent, and κ ≥ 0 con-
trols the skewness of weights (κ = 0 implies equal weights
on all agents, while a high value leads to a near-dictatorial
rule). As seen in Figure 2(b), here our approach performs
better than the best GM rule for higher κ values (as the GM
class does not include dictatorial rules), and converges to the
performance of the best dictatorial rule. The parameters ob-
tained by our method closely match with those in the target
rule. For κ = 0, the parameters have near-equal weights on
all agents and large weights on the extreme-left and extreme-
right outcomes 0 andm, thus mimicking the median rule. For
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(b) Agent-weighted Target

Figure 2: Experiments on social choice: Plot of test error vs. (a) location weight parameter λ, (b) agent weight parameter κ.
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(a) Equal-weighted Target

0 0.5 1

6

7

8

9

10

11

α

A
vg

. H
am

m
in

g 
di

st
an

ce

 

 StructSVM−WP
Doctor−prop DA
Hospital−prop DA
Equal−weight WP

(b) Diversity-inducing Target

Figure 3: Experiments on synthetic data for two-sided match-
ing: Plot of test error vs. preference correlation parameter α.

a large κ, we obtain a large weight on the dictator agent.

5.2 Stable Two-sided Matching
Synthetic data. We consider a one-to-one matching problem
between 10 hospitals and 10 doctors, and allow agent prefer-
ences to have ties. We give a brief description of the genera-
tors and target, and defer additional details to a longer version
of the paper. The preferences of a hospital over doctors are
generated using a combination of a base score and a hospital-
specific score, with a parameter α ∈ [0, 1] determining the
weight on the base score, and thus the extent of correlation
among agent preferences (higher values imply more concen-
tration). The scores are discretized into equal-length inter-
vals, inducing a weak ordering over the doctors. The prefer-
ences of doctors over hospitals are generated similarly.

We consider two (non-stable) target rules. The first is an
equal-weighted reward-maximizing Hungarian assignment
rule that assigns equal weights to all agents; here the reward
for matching a hospital and doctor is the sum of the ranks
(see definition in Section 4.1) they assign to each other. The
second is a diversity-inducing Hungarian assignment, where
the reward is the sum of the agent ranks, with an additional
diversity bonus given to matching of particular groups of hos-
pitals with particular groups of doctors. We generate 1000 ex-
amples, divided into equal train-validation-test sets, with the
validation set used for parameter tuning in structural SVM.

We compare the structural SVM approach with three sta-
ble mechanisms: a hospital-proposing DA rule, a doctor-
proposing DA rule, and a WP rule with equal weights on all
hospital-doctor pairs (W = 13(n×n)). Figure 3 contains plots
of test Hamming error vs. correlation parameter α for both

Table 1 Experiments motivated by real-world school choice
on 5 schools, 100 students, with a quota of 25/school. We use
train-test sets of size 200 and report the test (Hamming) error.

BM EH MH DH
StructSVM-WP 27.2 36.0 22.1 47.7
Student-proposing DA 28.4 46.5 33.4 57.3
Equal-weight WP 29.7 34.3 23.0 53.2

target rules. As the correlation among preferences increases,
the error rate increases for all methods; this is because the set
of stable matchings for a preference profile becomes smaller
as correlation increases (and there is less flexibility to fit the
target rule). For the equal-weighted target, our method recov-
ers a WP rule with equal weights on all agents, while per-
forming better than the DA rules for the most part. For the
diversity-inducing target, the obtained WP rule performs bet-
ter than the baselines even in the high correlation regime.

Real-world school-choice data. We next consider a many-
to-one matching problem inspired from a real-world school
choice data set. The data was obtained from the Wake County,
NC Public School System, and contained preferences from
37 schools and 5504 students. Using the data, we estimate a
Plackett-Luce preference model for schools and students. We
use this model to generate strict preferences for 5 schools and
100 students, and introduce ties to mimic real-world prefer-
ences (for students, we truncate their preferences at the top 1
or 2 choices, and for schools, we bin the preference ranks into
20 groups). Each school is assumed to have a capacity of 25.
We consider the following (unstable) target rules: the student-
proposing Boston mechanism (BM), an equal-weighted Hun-
garian rule (EH), a Hungarian rule with higher weights to
a randomly chosen 1/3rd of the students, assumed to have
minority status (MH), and the diversity-inducing Hungarian
(DH) rule mentioned above. As seen in Table 1, the proposed
method performs better than the baselines in most cases.
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