Proceedings of the NIPS 2005 Workshop on Learning to Rank

Generalization Bounds for k-Partite Ranking

Shyamsundar Rajaram Shivani Agarwal
Beckman Institute Computer Science & Al Laboratory
University of Illinois Massachusetts Institute of Technology
Urbana, IL 61801, USA Cambridge, MA 02139, USA
rajaraml@ifp.uiuc.edu shivani@csail.mit.edu
Abstract

We study generalization properties of ranking algorithms in the setting of
the k-partite ranking problem. In the k-partite ranking problem, one is
given examples of instances labeled with one of k ordered ‘ratings’, and
the goal is to learn from these examples a real-valued ranking function
that ranks instances in accordance with their ratings. This form of rank-
ing problem arises naturally in a variety of applications and, formally,
constitutes a generalization of the bipartite ranking problem that has re-
cently been studied. We start by defining notions of ranking error suitable
for measuring the quality of a ranking function in the k-partite setting.
We then give distribution-free probabilistic bounds on the expected error
of a ranking function learned by a k-partite ranking algorithm.

1 Introduction

Consider the following scenario. Kim, an avid reader, is always on the look-out for good
books to read. She has read several books in the last few years, and each time she reads
a book, she sums up her opinion on the book in the form of a ‘rating’, which can range
from one star (poor) to five stars (excellent). She wonders if, based on these past ratings,
someone could generate for her an ordered list of all the books at her local library, such that
books she is likely to give a high rating to appear at the top of the list, while books she is
likely to give a lower rating to appear at the bottom of the list. She could then use this list
as a guide in selecting her next book.

Kim’s problem is clearly an instance of a learning problem. How can this problem be
formalized? There is an instance space X (which in Kim’s case is the space of all books),

and there is a set Y of k ordered ‘ratings’, which we can take to be Y = {1,..., k}, with
k representing the highest rating and 1 the lowest (in Kim’s case, £ = 5). The input to the
problem is a finite sequence of labeled training examples S = ((z1,y1), ..., (Tym,Ynm)) €

(X x V)M, What form should the output of a learning algorithm for this problem take?

We could ask that a learning algorithm predict ratings of new instances. The goal of the
algorithm would then be to learn from S a function h : X —); given a new instance x € X,
the algorithm would predict the rating k(). There could be different ways to measure the
quality of such a function h. One possibility is to simply count an error if /() differs from
the true rating y of x; the error of h with respect to the training sample .S would then be

M

~ 1

Lo(h; S) = MZI{h(zi);éyi}a (D
i=1

where I, denotes the indicator variable whose value is one if its argument is true and zero
otherwise. This, however, reduces the problem to one of multi-class classification, in which
the k ratings are treated simply as k ‘classes’. Such a formulation ignores the order over
the ratings: predicting four stars instead of five incurs the same penalty as predicting two
stars instead of five. Another possibility is to weigh the error by the difference between the
predicted rating h(x) and the true rating y; in this case, the error of h w.r.t. S would be

R 1 M
Ly(hi8) = 57D Ih(xi) = wil. 2)
=1

This corresponds to ordinal regression, and comes closer to fitting our problem.

However, remember that what Kim wants is actually an ordered list of books; in other
words, the desired output is an ordering over the instances in X. We could construct an
ordering over X using a function h : X'—)), that predicts ratings of instances in X, by
placing instances that are given a higher rating by i above instances that are given a lower
rating by h, breaking ties at random; this would place instances predicted to have rating k at
the top (in an arbitrary order), followed by instances predicted to have rating £ — 1 (again in
an arbitrary order), and so on. A more natural approach, however, is to ask that a learning
algorithm output directly an ordering over the instance space. Formally, we require that
the algorithm learn from S a real-valued ranking function f : X—R that assigns scores to
instances and thereby induces an ordering or ranking over X': an instance x € X is ranked
higher by f than an instance 2’ € X if f(z) > f(2'), and lower if f(z) < f(z').

What would be a good way to measure the quality of a ranking function f? To answer this
question, let us consider the bipartite ranking problem which has recently received some
attention [7, 1]. In the bipartite ranking problem, instances in the space X come from
two categories, ‘positive’ and ‘negative’. The learner is given a finite number of examples
of instances labeled as positive or negative, and the goal is to learn a ranking function
f + X—R that ranks positive instances higher than negative ones. It is easy to see that this
problem corresponds exactly to our problem in the special case when k = 2, with positive
examples viewed as having the higher rating, 2, and negative examples the lower rating,
1. If nq, no denote the number of examples in the training sample S with ratings 1 and
2, respectively, then the bipartite ranking error (w.r.t. S) of a ranking function f, used to
measure the quality of a ranking function in the bipartite setting, can be expressed as

~ 1
Y2 fiyi=1) GGy =2
where , 1
AL 2,2’) = Lpw<sent + gHs@=r@)) -)

The bipartite ranking error effectively counts an error each time an instance of rating 2 is
ranked lower by f than an instance of rating 1 (assuming ties are broken at random). To
measure the quality of a ranking function in the general case (k > 2), we would like to use
a quantity that extends naturally the bipartite ranking error above; in particular, we would
like the quantity to reduce to the bipartite ranking error in the case k = 2.

One way to do this is to count a ranking error each time an instance of a higher rating is
ranked lower by f than an instance of a lower rating:

k—1 k
RifS) = game ¥ X X M),)

=1 m=l+1 {i:y; =1} {j:y;=m}

where we have decomposed S into Sx = (x1,...,zy) € XM and Sy = (y1,...,ym) €
VM and taken C(Sy) = S0 S8 41 MM , With n; denoting the number of ratings

in Sy equal to /. However, this quantity does not adequately distinguish ranking errors

made between instances of ratings 4 and 5 from ranking errors made between instances of
ratings 2 and 5. Such distinctions can be taken into account by measuring the error of f as

§1(f§5) =

Ay xj, i) - (6)
=1 m=I+1{i:y;=l} {jy;= }

If we represent the training sample S as a graph in which there is a vertex for each instance

in S and an edge between each pair of vertices for which a mis-ranking of the corresponding

pair of instances would contribute a non-zero error term, then under any of the above two

forms of ranking error (Egs. (5) and (6)), the resulting graph is k-partite. For this reason,

we refer to this form of ranking problem as the k-partite ranking problem.

The problem of ranking, and the related problem of ordinal regression, have recently begun
to be studied in machine learningl [5, 8, 6,7, 11, 1, 4]. In the most general setting of
the ranking problem [5, 7], the learner is given training examples consisting of ordered
pairs of instances, each labeled with a ranking preference that indicates the importance
of ranking that pair correctly, and the goal is to learn from these examples a real-valued
ranking function that ranks future instances accurately. The bipartite setting of the ranking
problem is perhaps one of the simplest, and several theoretical results have recently been
derived for it [7, 1, 2, 3]. The k-partite setting described above is a natural extension of the
bipartite setting that encompasses a wider range of applications; these include, for example,
the book ranking problem described earlier, as well as many other problems that involve
ranking based on ordered ratings, such as ranking movies or ranking music albums.

An important question for ranking algorithms, as for all learning algorithms, concerns gen-
eralization ability: how well does the empirical error of a learned ranking function, with
respect to the training sample from which it is learned, generalize to its expected error on
future data? This question has been addressed recently for the bipartite setting in [7, 1, 2],
and, in the case of zero empirical error, for a more general setting in [12]. In this paper,
we address this question for the k-partite setting. We start by defining in Section 2 notions
of the empirical and expected error of a k-partite ranking function, and then present in
Section 3 our generalization bounds for k-partite ranking algorithms.

2 k-Partite Ranking Error

The notions of empirical k-partite ranking error defined in Egs. (5) and (6) can be general-
ized as follows:

Definition 1 (Empirical k-partite ranking error). Let f : X —R be a ranking function
onX. Let S = ((x1,v1),-- -, (xar,ynr)) € (X x V)M, and for each I, let n; denote the
number of examples in S with rating l. Define the empirical k-partite ranking error of f

with respect to S, pammetrized by a> 0 and denoted by R, (f;9), a

Ro(f;S) =

(f7 33],.131)

1=1 m= l+1{wt—z}{wﬁm}

Fork =2, R, (f;S) reduces to the bipartite ranking error for each o > 0. In order to define
a notion of the expected k-partite ranking error of a ranking function, we need to introduce

'The problem considered in [8] actually lies between ordinal regression and k-partite ranking;
the setting is similar to that of k-partite ranking described above, but the goal is to learn a function
h : X—) that assigns ratings to new instances and the error of such a function is measured by

Q(h;) > Tinte<hian) -

=1 m=I+1 {iry; =1} {j:y;=m}

some notation; our notation will follow largely that of [1]. As is standard in classification,
we shall assume that all examples (z, y) are drawn randomly and independently according
to some fixed (but unknown) distribution D over X x Y. For each l € {1,...,k}, the
notation D; will be used to denote the ‘class-conditional’ distribution D,,—;. Several of
our results will involve the conditional distribution Dg, |s, —, for some label sequence

y = (y1,...,yn) € YM; this distribution is simply Dy, X ... X Dy,,.

We would like to define the expected k-partite ranking error of a ranking function f : X —-R
as its expected ‘ranking loss’ on a pair of instances drawn from distinct classes. It turns out
that, unlike the bipartite case, the expected loss in the general k-partite case depends on the
class probabilities. Thus, we define the expected error as follows:

Definition 2 (Expected k-partite ranking error). Let f : X —R be a ranking function on
X. Let p= (p1,...,p1) € [0,1]% be a ‘class probability’ vector satisfying Zle o= 1
Define the expected k-partite ranking error of f with respect to p, parametrized by o > 0
and denoted by R, (f; p), as

k—1 k
1
Ro(f;p) = ﬁ Z Z pleEr~Dz,z/~Dm{(m — DA, xlvf)})
AV =1 m=Il+1
where v(p) = Y121 Yow— i1 PLPm

In an ideal situation, one would like to estimate the expected error of a learned ranking
function w.r.t. the true class probabilities (under D). This is difficult for two reasons: first,
the true class probabilities are generally unknown; second, the true probabilities may be
different from the empirical class probabilities. In this paper, we study how well one can
estimate the expected error w.r.t. the empirical class probabilities.

Definition 3 (Skew vector). Lety = (y1,...,yn) € YM be a finite rating sequence of
length M € N, and for eachl € {1, ...k}, let ny = |{i : y; = l}|. Define the skew vector

of y, denoted by p(y), as
p(y) = (Tll/M7...,’le/M) .

For each l, we shall denote by p;(y) the lth component of p(y), i.e., pi(y) = ni/M.

We shall be interested in bounding the deviation of the empirical error of a learned ranking
function fg, w.r.t. the training sample S from which it is learned, from the expected error
of fg with respect to the skew vector of Sy.

3 Generalization Bounds

We give here two generalization bounds for k-partite ranking algorithms. The first bound
applies to algorithms that select a ranking function from a finite function class; the second
bound can be applied to algorithms that search potentially infinite function classes. Note
that our results are all distribution-free, in the sense that they hold for any distribution D.

Theorem 1. Let F be a finite class of real-valued functions on X, and let A be a k-partite
ranking algorithm that, given a training sample S € (X x V)M, returns a ranking function
fs € F. Let a > 0. Then for any 0 < 6 < 1, with probability at least 1 — § (over the draw
of S according to DM), we have

n n (2 k
Rulfs:)~ Ralfsipl5v)| < (W) > (54 (oS,
=1

where fory € VM, Cia(y) = (L, lm = 1pn(3)) /1(p¥))

The proof of the above bound relies on the derivation of a large deviation result for the
k-partite ranking error, which in turn relies on a powerful concentration inequality of Mc-
Diarmid [9] and is similar to the derivation of such a result for the bipartite case [1]. Lack
of space precludes a full discussion here; complete details of the proof can be found in [10].

Our second generalization bound, which is applicable to k-partite ranking algorithms that
select a ranking function from a potentially infinite function class, is expressed in terms of
a new set of combinatorial parameters that we term the k-partite rank-shatter coefficients.
These coefficients extend naturally the bipartite rank-shatter coefficients of [1].

Definition 4 (Bipartite rank matrix [1]). Let f : X —R be a ranking function on X, let
m,n €N, and letx = (x1,...,2,) € X™ x' = (2,...,2]) € X™. The bipartite rank

matrix of f with respect to (x,x’), denoted by By(x,x'), is defined to be the matrix in
{0,1/2,1}™*™ whose (i, j)-th element (fori € {1,...,m}, j € {1,...,n}) is given by

1
Brx:xX); = Iyeosreny + 5lreo=re)) -

Definition 5 (k-Partite rank matrix set). Let f : XY—R be a ranking function on X,
let ny,...,n, € N, and for each 1 € {1,...,1}, let x) = (xgl),...,x%ll)) € xm.

Define the k-partite rank matrix set of f with respect to (x(l), . ,x(k)), denoted by
Kf(x(l), ..., x)), 10 be the following set of (g) bipartite rank matrices:
Ky(xW, ... x®) = {Bf(x(l),x(m)) |1<i<m< k}

Definition 6 (k-Partite rank-shatter coefficient). Let F be a class of real-valued func-
tions on X, and let ny,...,n; € N. Define the (ny,...,ny)-th k-partite rank-shatter
coefficient of F, denoted by r(F,n1,...,ny), as follows:

— 1) (k)
r(F,ny,...,ng) x(]lf)neaicanKf(x Lo, X)|f6.7-'}’
Clearly, for finite F, we have r(F,ny,...,n;) < |F| for all ny,...,n;. In general,
r(F,ny, ... ,ng) < Hé:ll Hfﬁ:l“ 3umm forall my, ..., ny.

Theorem 2. Let F be a class of real-valued functions on X, and let A be a k-partite
ranking algorithm that, given a training sample S € (X x Y)M, returns a ranking function
fs € F. Let a« > 0. Then for any 0 < § < 1, with probability at least 1 — § (over the draw
of S according to DM), we have

Ra(fs:5) = Ralfs:p(Sy))|

k
> u(Sy) (CralSy))?,

=1

<

8 <lm(f,2Mp1(sy),...,2Mpk(Sy)) +1H(§)>
]

where C) ., (Sy) is as defined in Theorem 1.

The proof of the above bound relies on the derivation of a uniform convergence result
for the k-partite ranking error, and makes use of techniques similar to those used for the
bipartite case [1]. Details (excluded here due to lack of space) can be found in [10].

The above bound is meaningful only if r(F, 2ny, ..., 2ng) grows sufficiently slowly with
ni,...,nk. Using properties of the bipartite rank-shatter coefficients [1], it can be shown
that this is the case for certain function classes F. In particular, one can obtain the fol-
lowing polynomial upper bound on the k-partite rank-shatter coefficients for linear ranking
functions (see [10] for details):

Theorem 3. Ford € N, let Fiiy(qy denote the class of linear ranking functions on RY. Then
forallny,...,n; €N, k1

H 2eninm,
r(]—']in(d)7n17...,nk) S I | <Cll>

A similar result can be shown for higher-order polynomial ranking functions.

4 Conclusion

The k-partite setting of the ranking problem is a natural setting that encompasses a wide
range of applications. Our goal in this paper has been to initiate a formal study of this
setting; we have defined notions of k-partite ranking error suitable for measuring the quality
of ranking functions in the k-partite setting, and have obtained generalization bounds for k-
partite ranking algorithms. While the basic techniques used to derive our results are similar
to those used in the bipartite setting (which constitutes a special case of the more general
k-partite setting), there are several important differences, including in particular the need in
the k-partite case to define the expected error of a ranking function with respect to a vector
p of ‘class probabilities’, and to consider convergence of the empirical error to the expected
error with respect to an appropriate vector. It remains an open problem to derive bounds on
the expected error with respect to the unknown vector of true class probabilities. Indeed,
our results should be viewed as a first step in understanding the generalization behaviour
of k-partite ranking algorithms. We expect that they will open the door to further analyses.
For example, it can be shown that the (empirical) k-partite ranking error can be expressed
as a U-statistic, which suggests that it may be possible to use tools of U-statistics [4].

Acknowledgments

We would like to thank Thore Graepel and Ralf Herbrich for pointing us to the k-partite
generalization of the bipartite ranking problem. We would also like to express our gratitude
to an anonymous reviewer for many insightful comments and suggestions.

References
[1] S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth. Generalization bounds for the
area under the ROC curve. Journal of Machine Learning Research, 6:393-425, 2005.
[2] S. Agarwal and P. Niyogi. Stability and generalization of bipartite ranking algorithms. In
Proceedings of the 18th Annual Conference on Learning Theory, 2005.
[3] S. Agarwal and D. Roth. Learnability of bipartite ranking functions. In Proceedings of the 18th
Annual Conference on Learning Theory, 2005.
[4] S. Clémengon, G. Lugosi, and N. Vayatis. Ranking and scoring using empirical risk minimiza-
tion. In Proceedings of the 18th Annual Conference on Learning Theory, 2005.
[S] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. Journal of Artificial
Intelligence Research, 10:243-270, 1999.
[6] K. Crammer and Y. Singer. Pranking with ranking. In Advances in Neural Information Pro-
cessing Systems 14, 2002.
[7] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4:933-969, 2003.
[8] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regres-
sion. Advances in Large Margin Classifiers, pages 115-132, 2000.
[9] C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics 1989,
pages 148—188. Cambridge University Press, 1989.
[10] S.Rajaram and S. Agarwal. Generalization bounds for k-partite ranking. Report, 2005. Avail-
able from http://www.ifp.uiuc.edu/~rajaraml/k-ranking—-report.pdf.
[11] S.Rajaram, A. Garg, X. S. Zhou, and T. S. Huang. Classification approach towards ranking and
sorting problems. In Proc. of the 14th European Conference on Machine Learning, 2003.
[12] C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margin-based ranking meets boosting in
the middle. In Proceedings of the 18th Annual Conference on Learning Theory, 2005.

