

Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses

Harish G. Ramaswamy¹, Shivani Agarwal¹ and Ambuj Tewari²

¹Indian Institute of Science

²University of Michigan

Calibrated Surrogates

Binary Classification

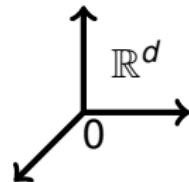
$$\mathcal{Y} = \widehat{\mathcal{Y}} = \{\pm 1\}$$

$$\mathbf{L} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Minimize surrogate loss (e.g. hinge) over \mathbb{R} ; learn $f : \mathcal{X} \rightarrow \mathbb{R}$

$$\xleftarrow{\hspace{1cm}} 0 \xrightarrow{\hspace{1cm}} \mathbb{R}$$

Final prediction in $\{\pm 1\}$:


$$h(x) = \text{sign}(f(x))$$

General Multiclass Problem

$$\mathcal{Y} = \{1, \dots, n\}; \widehat{\mathcal{Y}} = \{1, \dots, k\}$$

$$\mathbf{L} = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 0 & 3 & 2 \\ 4 & 5 & 0 & 1 \end{bmatrix} \quad \begin{matrix} \text{(predictions)} \\ \text{(classes)} \end{matrix}$$

Minimize surrogate loss over \mathbb{R}^d ; learn $f : \mathcal{X} \rightarrow \mathbb{R}^d$

$$\xleftarrow{\hspace{1cm}} 0 \xrightarrow{\hspace{1cm}} \mathbb{R}^d$$

Final prediction in $\{1, \dots, k\}$:

$$h(x) = \text{pred}(f(x))$$

Application to Subset Ranking

Exponential sized loss matrices with low rank.

Loss matrix	Rank	Efficient predictor
NDCG	r	✓
Precision@q	r	✓
Expected Rank Utility	r	✓
Mean Average Precision	$\leq r^2$	X
Pairwise Disagreement	$\leq r^2$	X

r = No. of docs. to be ranked

	σ_1	σ_2	\dots	\hat{y}	\dots	$\sigma_{r!}$
00...00						
00...01						
\vdots						
y						
\vdots						
11...11						

Poster Sat35
Today